Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T12:37:37.768Z Has data issue: false hasContentIssue false

Kinetics of Chemical Vapor Deposition of Copper from (β-diketonate)CuL Precursors

Published online by Cambridge University Press:  25 February 2011

Ajay Jain
Affiliation:
Chemical Engineering Department, University of New Mexico, Albuquerque, NM 87131
K. M. Chi
Affiliation:
Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
T. T. Kodas
Affiliation:
Chemical Engineering Department, University of New Mexico, Albuquerque, NM 87131
M. J. Hampden-Smith
Affiliation:
Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
Get access

Abstract

The reaction kinetics of (hfac)CuL were examined in a warm-wall differential reactor. The data are consistent with neutral ligand L dissociation as rate limiting for (hfac)CuVTMS. A strong dependence of film resistivity on (hfac)CuVTMS pressure was observed. Selectivity for tungsten (W) surfaces in the presence of PECVD SiO2 was not observed for (hfac)CuVTMS under the conditions employed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sah, C. T., Proceedings of the IEEE, 1280 Oct. 1988.Google Scholar
2. Lionel, W. S., Workshop on Tungsten and other Advanced Metals for VLSI application VII, 3 Oct. 1990.Google Scholar
3. Van Hermem, R. L., Spendlove, L. B., Sievers, R. E., J. Electrochem. Soc. 112(2), 1123 1965.Google Scholar
4. Temple, D., Reisman, A., J. Electrochem. Soc. 136(11) 3525 1989.Google Scholar
5. Arita, Y., Mat. Res. Soc. Symp. Proc. VLSI V (MRS), 335 1990.Google Scholar
6. Kaloyeros, A. E., Feng, A., Garhart, J., Brooks, K. C., Ghosh, S. K., Saxena, A. N., Luethrs, F., J. Electronic Mater. 19(3), 271 1990.CrossRefGoogle Scholar
7. Awaya, N., Arita, Y., Digest of Technical paper, Symposium on VLSI Technology (Kyoto), 103 1989.Google Scholar
8. Jefferies, P. M., Girolami, G. S., Chem. of Mater. 1, 8 1989.Google Scholar
9. Hampden-Smith, M. J., Kodas, T. T., Paffet, M., Farr, J. D., Shin, H. K., Chem. of Mater. 2, 636 1990.Google Scholar
10. Beach, D. B., Le Goues, F. K., Hu, C. K., Chem. of Mater. 2, 216 1990.Google Scholar
11. Shin, H. -K., Chi, K. M., Hamnden-Smith, M. J., Kodas, T. T., Paffett, M., Farr, J. D.. Angew. Chem. Advanced Materials 3, 246 1991.Google Scholar
12. Jain, A., Chi, K. -M., Shin, H. -K., Farkas, J., Kodas, T. T., Hampden-Smith, M. J., Semiconductor International in press 1992.Google Scholar
13. Jain, A., Chi, K. M., Hampden-Smith, M. J., Kodas, T. T., Farr, J. D., Paffett, M. F., J. Materials Research 7(2), 261 1992.CrossRefGoogle Scholar
14. Chi, K. M., Shin, H. -K., Hampden-Smith, M. J., Kodas, T. T., Duesler, E. N., Polyhedron 10, 2293 1991.Google Scholar
15. Cohen, S. L., Lieher, M., Kasi, S., Appl. Phys. Lett. 60, 50 1992.Google Scholar
16. Reynolds, S. K., Smart, C. J., Baran, E. F., Baum, T. H., Larson, C. E., Brock, P., J. Appl. Phys. Lett. 52, 2332 1991.Google Scholar
17. Kumar, R., Maverick, A. W., Fronczek, F. R., Lai, G., Griffin, G. L., 201st ACS meeting (Atlanta, GA) INOR 256 April 1991.Google Scholar
18. Jain, A., Chi, K. M., Kodas, T. T., Hampden-Smith, M. J., Farr, J. D., Paffett, M. F., Chem. of Mater. 1 995 1991.Google Scholar
19. Chi, K. M., Shin, H. -K., Hampden-Smith, M. J., Kodas, T. T., Duesler, E. N., Inorg. Chem. 20, 4293 1991.Google Scholar
20. Baum, T. H., Larson, C. E., Chem. Mater, in press, 1992.Google Scholar
21. Jain, A., Shin, H. -K., Chi, K. M., Hampden-Smith, M. J., Kodas, T. T., Farkas, J., Farr, J. D., Paffett, M. F., SPIE Microelectronis Processing symposium (San Jose) 23., 1596 Sept. 1991.Google Scholar
22. Norman, J. A. T., Muratore, B. A., Dyer, P. N., Roberts, D. A., Hochberg, A. K., J. dc Physique IV 1 C2 -271 1991.Google Scholar