Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-07T19:28:48.459Z Has data issue: false hasContentIssue false

Laser Wavelength Dependent Properties of BN Thin Films Deposited by Laser Ablation

Published online by Cambridge University Press:  15 February 2011

Y. Suda
Affiliation:
Department of Electrical Engineering, Sasebo National College of Technology, 1-1 Okishin-machi, Sasebo, Nagasaki 857-11, Japan
T. Nakazono
Affiliation:
Department of Electrical Engineering, Sasebo National College of Technology, 1-1 Okishin-machi, Sasebo, Nagasaki 857-11, Japan
K. Ebihara
Affiliation:
Department of Electrical Engineering and Computer Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860, Japan
K. Baba
Affiliation:
Technology Center of Nagasaki, 2-1303-8 Ikeda, Omura, Nagasaki 856, Japan
Get access

Abstract

Boron Nitride (BN) thin films are deposited on heated (650 °C ) silicon (100) substrates using Nd:YAG (532 nm) and KrF excimer (248 nm) laser ablation. The laser beam is focused on the hBN targets. The films are grown using a laser repetition rate of 10 Hz atenergy density 3.8 J/cm2. Argon gas is mixed with the reactant nitrogen gas and the total gas pressure in the chamber during deposition is 20 Pa. Auger Electron Spectroscopy shows that the N/B composition ratio depends on the mixture ratio of nitrogen and the relativeemission intensity of B + (345.1 nm). The surface morphology of the films prepared by the 532 nm laser is rough with large particulates, whereas much smoother surfaces with fewer and smaller particulates are obtained with the 248 nm laser. Fourier Transform IR measurement shows that the cBN phase in the films is enhanced by applying the negative RF self-bias voltage ( ˜ 200 V) on the substrate electrode.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mieno, M. and Yoshida, T., Jpn. J. Appl. Phys. 29, L1175 (1990)Google Scholar
2. Saitoh, H., Yarbrough, W. A., Appl. Phys. Lett. 58, 2482 (1991)Google Scholar
3. Kester, D.J., Ailey, K. S., Davis, R. F. and More, K. L., J. Mater. Res. 8, 1213 (1993)Google Scholar
4. Eddy, C.R., Jr and Sartwell, B. D., J. Vac. Sci. Technol. 13, 2018 (1994)Google Scholar
5. Hofsass, H., Ronning, C., Griesmeier, U., Gross, M., Reinke, S. and Kuhr, M., Appl. Phys. Lett. 67, 46 (1995)Google Scholar
6. Watanabe, S., Miyake, S., Zhou, W., Ikuhaya, Y., Suzuki, T., Murakawa, M., Appl. Phys. Lett. 66, 1478 (1995)Google Scholar
7. Mineta, S., Kohata, M., Yasunaga, N. and Kikuta, Y, Thin Solid Films 189, 125 (1990)Google Scholar
8. Doll, G.L., Sell, J. A., Taylor, C. A. II and Clarke, R., Phys. Rev. 43, 6816 (1991)Google Scholar
9. Friedmann, T.A., McCarty, K. F., Klaus, E. J., Boehme, D., Clift, W. M., Johnsen, H. A., Mills, M. J. and Ottesen, D. K., Appl. Phys. Lett. 61, 2406 (1992)Google Scholar
10. BaUal, A.K., Salamanca-Riba, L., Doll, G. L., Taylor, C. A. II and Clarke, R., J. Mater. Res. 7, 1618 (1992)Google Scholar
11. Medlin, D.L., Fdedmann, T. A., Mirkarimi, P. B., Rez, P., Mills, M.J. and McCarty, K.F., J. Appl. Phys. 76, 295 (1994)Google Scholar
12. Friedmann, T.A., Mirkarimi, P. B., Medlin, D. L., McCarty, K. F., Klaus, E.J., Boehme, D. R., Johnsen, H. A., Mills, M. J., Ottesen, D. K. and Barbour, J. C., J. Appl. Phys. 76, 3088 (1994)Google Scholar
13. Suda, Y., Nakazono, T., Ebihara, K. and Baba, K., T. IEE of Jpn. 115-A, 1263 (1995)Google Scholar
14. Kaneda, K. and Shibata, K., Jpn. J. Appl. Phys. 33, 266 (1994)Google Scholar
15. Ikeda, T., Kawate, Y. and Hirai, Y., J. Vac. Sci. Technol., AS, 3168 (1990)Google Scholar