Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T09:07:45.427Z Has data issue: false hasContentIssue false

Li mobility in (Li,Na)yLa0.66-y/3TiO3 perovskites (0.09<y≤0.5). A model system for the percolation theory.

Published online by Cambridge University Press:  11 February 2011

J. Sanz
Affiliation:
Instituto Ciencia de Materiales de Madrid - CSIC, 28049 Cantoblanco, Spain.
A. Rivera
Affiliation:
Instituto Ciencia de Materiales de Madrid - CSIC, 28049 Cantoblanco, Spain. GFMC, Dpto. Física Aplicada III, Universidad Complutense, 28040 Madrid, Spain.
C. León
Affiliation:
GFMC, Dpto. Física Aplicada III, Universidad Complutense, 28040 Madrid, Spain.
J. Santamaría
Affiliation:
GFMC, Dpto. Física Aplicada III, Universidad Complutense, 28040 Madrid, Spain.
A. Várez
Affiliation:
Dpto. Ciencia de Materiales. Universidad Carlos III de Madrid. 28911 Leganés, Spain.
O. V'yunov
Affiliation:
Solid State Chem., Inst. Inorg. Chem., Ukrainian Academy Sciences, 252680, Ukraine.
A. G. Belous
Affiliation:
Solid State Chem., Inst. Inorg. Chem., Ukrainian Academy Sciences, 252680, Ukraine.
Get access

Abstract

The dependence of ionic transport on structure and composition of perovskites LiyLa0.66-y/3TiO3 (0.09 ≤ y ≤ 0.5) and Li0.5-xNaxLa0.5TiO3 (0 ≤ x ≤ 0.5) has been analyzed by means of Neutron Diffraction, NMR and Impedance Spectroscopy. In the first series, ion conductivity displays a non-Arrhenius behavior, decreasing activation energy at increasing temperatures. Li mobility is accompanied by a considerable increase of Li thermal factor deduced from ND data. In the second series, local lithium mobility decrease monotonously with the sodium content at room temperature; however, long-range dc conductivity decreases sharply at x = 0.2 more than six orders of magnitude. This decrease on dc conductivity is discussed in terms of a three-dimensional percolation theory of vacant Asites. In this model, the number of vacant sites is controlled by the amount of Na and La of the perovskite.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Colbow, K. M., Dahn, J. R., Hearing, R. R., J. Power Sources 26, 397 (1989).Google Scholar
2. Belous, A. G., Novitskaya, G. N., Polyanetskaya, S. V., Gornikov, Yu. I., Izv. Akad. Nauk SSSR, Neorg. Mater. 23, 470 (1987).Google Scholar
3. Inaguma, Y., Liquan, C., Itoh, M., Nakamura, T., Uchida, T., Ikuta, H., Wakihara, M., Solid State Commun. 86, 689(1993).Google Scholar
4. Ibarra, J., Várez, A., León, C., Santamaría, J., Torres-Martínez, L.M., Sanz, J., Solid State Ionics 134, 219(2000).Google Scholar
5. Fourquet, J. L., Duroy, H., Crosnier-Lopez, M.P., J. Solid Stat. Chem. 127, 283 (1996).Google Scholar
6. Alonso, J. A., Sanz, J., Santamaría, J., León, C., Várez, A., Fernández-Díaz, M. T., Angew. Chem. Int. Ed. 39, 619(2000).Google Scholar
7. París, M. A., Sanz, J., León, C., Santamaría, J., Ibarra, J., Várez, A., Chem. Mat. 12, 1694 (2000).Google Scholar
8. Sanz, J., Alonso, J. A., Varez, A., Fernández-Díaz, M. T., J. Chem. Soc. Dalton Trans. 1406 (2002).Google Scholar
9. Inaguma, Y., Katsumata, T., Itoh, M., Morii, Y., J. Solid State Chem. 166, 67 (2002).Google Scholar
10. Rivera, A., León, C., Santamaría, J., Varez, A., V'yunov, O., Belous, A. G., Alonso, J. A., Sanz, J., Chem. Mat. (2002) (in press).Google Scholar
11. León, C., Santamaría, J., París, M. A., Sanz, J., Ibarra, J., Torres, L. M., Phys. Rev. B 56, 5302, (1997).Google Scholar
12. Rivera, A., León, C., Santamaría, J., Varez, A., París, M. A., Sanz, J., J. ′Non-Crystalline Solids 307–310, 992 (2002).Google Scholar
13. Inaguma, Y., Itoh, M., Solid State Ionics 86–88, 257 (1996).Google Scholar