Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T15:47:14.001Z Has data issue: false hasContentIssue false

Light Generating Carrier Recombination and Impurities in Wurtzite GaN/Al2O3 Grown by MOCVD

Published online by Cambridge University Press:  21 February 2011

U. Kaufmann
Affiliation:
Fraunhofer-Institute for Applied Solid State Physics, Tullastrasse 72, D-79108 Freiburg, Germany
M. Kunzer
Affiliation:
Fraunhofer-Institute for Applied Solid State Physics, Tullastrasse 72, D-79108 Freiburg, Germany
C. Merz
Affiliation:
Fraunhofer-Institute for Applied Solid State Physics, Tullastrasse 72, D-79108 Freiburg, Germany
I. Akasaki
Affiliation:
Department of Electrical Engineering, Meijo University, Nagoya 468, Japan
H. Amano
Affiliation:
Department of Electrical Engineering, Meijo University, Nagoya 468, Japan
Get access

Abstract

We have studied by photoluminescence (PL) and optically detected magnetic resonance (ODMR) un-doped, n-doped and p-doped thin wurtzite GaN layers grown by metal-organic chemical vapor deposition on sapphire substrates. From the PL data for free excitons an accurate value of the free A-type exciton binding energy and a more accurate estimate for the hole effective mass is deduced. The localization energies of the Mg and the Zn neutral acceptor bound excitons are found to be in good agreement with Haynes’ rule. A sharp emission line, assigned to free electron recombination at a 116 meV shallow acceptor, together with three additional weak zero-phonon-lines (ZPLs), assigned to distant donor-acceptor (DA) pairs, are reported for the first time. The chemical nature of this acceptor and that of three residual donors, inferred from the DA pair ZPLs, is discussed. The effects of strain in thin GaN layers on a dissimilar substrate like sapphire are emphasized with respect to the energetic position of narrow PL lines. The ODMR data obtained for undoped, Mg-doped and Zn-doped GaN layers provide insight into the recombination mechanisms responsible for the broad yellow (2.25 eV), the violet (3.15 eV) and the blue (2.8 eV) PL bands, respectively. The ODMR results for Mg and Zn also show that these acceptors do not behave effective mass like and indicate that the acceptor hole is mainly localized in the nearest neighbor shell surrounding the acceptor core.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Grimmeiss, H.G. and Koelmans, H., Z. Naturforschung 14a, 264 (1959)Google Scholar
2 Maruskaand, H.P. Tietjen, J.J., Appl. Phys. Lett. 15, 327 (1969)Google Scholar
3 Dingle, R., Sell, D.D., Stokowski, S.E. and Ilegems, M., Phys. Rev. B 4, 1211 (1971)Google Scholar
4 Amano, H., Sawaki, N. and Akasaki, I., Appl. Phys. Lett. 48, 353 (1986)Google Scholar
5 Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I., Japanese J. Appl. Phys. 28, L 2112 (1989)Google Scholar
6 Akasaki, I. and Amano, H., Inst. Phys. Conf. Ser. 129, 851 (1993)Google Scholar
7 Akasaki, I. and Amano, H., J. Electrochem. Soc. 141, 2266 (1994)Google Scholar
8 Nakamura, S., Mukai, T. and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994)Google Scholar
9 Nakamura, S., Mukai, T. and Senoh, M., J. Appl. Phys. 76, 8189 (1994)Google Scholar
10 Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S., Japanese J. Appl. Phys. 34, L 797 (1995)Google Scholar
11 Detchprohm, T., Hiramatsu, K. , Itoh, K. and Akasaki, I., Japanese J. Appl. Phys. 31, L 1454 (1992)Google Scholar
12 Shan, W., Schmidt, T. J., Yang, X. H., Hwang, S. J. and Song, J.J., Appl. Phys. Lett. 66, 985 (1995)Google Scholar
13 Merz, C., Kunzer, M. and Kaufinann, U., submitted to Phys. Rev. B Google Scholar
14 Eckey, L., Podlowski, L., Göldner, A., Hoffmann, A., Broser, I., Meyer, B. K., Volm, D., Streibl, T., Detchprohm, T., Amano, H., Akaski, I., Int. Conf. "Silicon Carbide and Related Materials", Kyoto (Japan), Sept. 1821, 1995, in pressGoogle Scholar
15 Meyer, B. K., Volm, D., Graber, A., Alt, H. C., Detchprohm, T., Amano, H. and Akasaki, I., Solid State Commun. 95, 597 (1995)Google Scholar
16 Alt, H. C., Meyer, B. K., Volm, D., Graber, A., Drechsler, M., Hofmann, D. M., Detchprohm, T., Amano, H. and Akasaki, I., Int. Conf. "Defects in Semiconductors", Sendai (Japan), July 2328, 1995, in preGoogle Scholar
17 Strictly speaking, the decomposition of the in plane biaxial stess also contains an orthorhombic component. However, the major effect on the positions of sharp PL lines is due to the hydrostatic and the tensile axial stress components.Google Scholar
18 Skettrup, T., Suffczynski, M. and Gorzkowski, W., Phys. Rev B 4, 512 (1971)Google Scholar
19 Eagles, D. M., J. Phys. Chem. Solids 16, 76 (1960)Google Scholar
20 Niebuhr, R., Bachem, K., Dombrowski, K., Maier, M., Pletschen, W., and Kaufmann, U., J. Electronic Mat. 24, 1531 (1995)Google Scholar
21 Abernathy, C. R., MacKenzie, J. D. and Pearton, S. J., Appl. Phys. Lett. 66, 1969 (1995)Google Scholar
22 Neugebauer, J. and Van de Walle, C. G., Phys. Rev. B 50, 8067 (1994)Google Scholar
23 Neugebauer, J. and Van de Walle, C. G., 22 nd Int. Conf. "The Physics of Semiconductors", Vancouver, Canada 15. – 19. 8. 1994, Ed. Lockwood, D. J. (World Scientific Publishing, Singapore, 1995) Vol 3 pp 2327Google Scholar
24 Boguslawski, P., Briggs, E. and Bernholc, J., see Ref. 22, pp 2331 Google Scholar
25 Boguslawski, P., Briggs, E. and Bernholc, J., Phys. Rev. B 51, 17255 (1995)Google Scholar
26 Perlin, P., Suski, T., Teisseyre, H., Leszczynski, M., Grzegory, I., Jun, J., Porowski, S., Boguslawski, P., Bernholc, J., Chervin, J. C., Polian, A., and Moustakas, T. D., Phys. Rev. Lett. 75, 296 (1995)Google Scholar
27 Glaser, E. R., Kennedy, T. A., Doverspike, K., Rowland, L. B., Gaskill, D. K., Freitas, J. A. Jr., Asif Khan, M., Olson, D. T., Kuzma, J. N. and Wickenden, D. K., Phys. Rev. B 51, 13326 (1995)Google Scholar
28 Dingle, R. and Ilegems, M., Solid State Commun. 9, 175 (1971)Google Scholar
29 Ogino, T. and Aoki, M., Japanese J. Appl. Phys. 19, 2395 (1980)Google Scholar
30 Baur, J., Kaufmann, U., Kunzer, H., Schneider, J., Amano, H., Akasaki, I., Detchprohm, T. and Hiramatsu, K., Appl. Phys. Lett. 67, 1140 (1995)Google Scholar
31 Kunzer, M., Kaufmann, U., Maier, K., Schneider, J., Herres, N., Akasaki, I. and Amano, H., Mat. Sc. Forum 143147, 87 (1994)Google Scholar
32 Kunzer, M., PhD Thesis, University of Freiburg, 1995 Google Scholar
33 Carlos, W. E., Freitas, J. A. Jr., Asif Khan, M., Olson, D. T. and Kuznia, J. N., Phys. Rev. B 48, 17878 (1993)Google Scholar
34 Dang, Le Si, Lee, K. M., Watkins, G. D. and Choyke, W. J., Phys. Rev. Lett. 45, 390 (1980)Google Scholar
35 Schirmer, O. F., J. Phys. Chem. Solids 29, 1407 (1968)Google Scholar
36 Zwingel, D. and Gärtner, F., Solid State Commun. 14, 45 (1974)Google Scholar
37 Schneider, J., Holton, W. C. and Estle, T. L., Phys. Lett. 5, 312 (1963)Google Scholar
38 Bratus, V., Baran, N., Maksimenko, V., Petrenko, T., Romanenko, V., Mat. Sc. Forum 143147, 81 (1994)Google Scholar