Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-16T21:09:13.752Z Has data issue: false hasContentIssue false

Light-Emitting nm-Size Silicon Using Electrochemical Anodization and Oxidation

Published online by Cambridge University Press:  28 February 2011

Toshimichi Ito
Affiliation:
Osaka University, Department of Electrical Engineering, Suita, Osaka 565, Japan.
Toshimichi Ohta
Affiliation:
Osaka University, Department of Electrical Engineering, Suita, Osaka 565, Japan.
Kenji Motoi
Affiliation:
Osaka University, Department of Electrical Engineering, Suita, Osaka 565, Japan.
Osamu Arakaki
Affiliation:
Osaka University, Department of Electrical Engineering, Suita, Osaka 565, Japan.
Akio Hiraki
Affiliation:
Osaka University, Department of Electrical Engineering, Suita, Osaka 565, Japan.
Get access

Abstract

Porous silicon oxidized by thermal, anodic and plasma processes has been investigated mainly using transmission microscopy, ion scattering techniques for compositional depth analysis (including H) and photoluminescence (PL) measurements. Suitable thermal oxidation of PS can increases in PL peak energy: the largest peak energy attained in the present study is 2.6eV (475nm). In the case of anodic oxidation, PL excitation spectra measured suggest the presence of some effect other than the quantum confinement effect at the initial oxidation stage while the latter may be effective at the subsequent anodic oxidation stage and in the thermal oxidation process. Electroluminescence was also observed from the oxidized porous silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2 Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M. and Muller, F., Appl. Phys. Lett. 59, 304 (1991).Google Scholar
3 see Mat. Soc. Soc. Symp. Proc. vol. 256, (1992).Google Scholar
4 Kato, Y., Ito, T. and Hiraki, A., Jpn. J. Appl. Phys. 27.L1406(1988).Google Scholar
5 Ito, T., Yasumatsu, T., Watabe, H. and Hiraki, A., Jpn. J. Appl. Phys. 29. L201 (1990)Google Scholar
6 Yasumatsu, T.. Ito, T., Nishizawa, H. and Hiraki, A., Appl. Surf. Sci. 48/49, 414 (1991).Google Scholar
7 Ito, T., Ohta, T. and Hiraki, A., Jpn. J. Appl. Phys. 31, LI (1992).Google Scholar
8 Ito, T., Ohta, T., Arakaki, O. and Hiraki, A., Mat. Res. Soc. Symp. Proc. 256, 127 (1992)Google Scholar
9 Koch, V.P.-, Muschik, T., Kuk, A.. Meyer, B.K. and Koch, F., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
10 Yamada, M. and Kondo, K., Jpn. J. Appl. Phys. 31. L993(1992).Google Scholar
11 Arakaki, O., Ohta, T., Motoi, K., Ito, T. and Hiraki, A., Jpn. J. Appl. Phys., to be published.Google Scholar
12 Ito, T., Kiyama, H., Motoi, K. and Hiraki, A., Jpn. J. Appl. Phys., to be published.Google Scholar