Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-05T18:07:03.869Z Has data issue: false hasContentIssue false

Liquid Crystal Nanoparticles- LCNANOP: A SONSII Collaborative Research Project

Published online by Cambridge University Press:  01 February 2011

John William Goodby
Affiliation:
jwg500@york.ac.uk, York University, Chemistry, York, United Kingdom
Martin Bates
Affiliation:
mb530@york.ac.uk, York University, Chemistry, York, United Kingdom
Isabel Saez
Affiliation:
iss500@york.ac.uk, York University, Chemistry, York, United Kingdom
Ewa Gorecka
Affiliation:
gorecka@chem.uw.edu.pl, University of Warsaw, Chemistry, Warsaw, Poland
Heinz Kitzerow
Affiliation:
heinz.kitzerow@uni-paderborn.de, University of Paderborn, Chemistry, Paderborn, Germany
Daniel Guillon
Affiliation:
daniel.guillon@ipcms.u-strasbg.fr, University Louis Pasteur, IPCMS, Strasbourg, France
Bertrand Donnio
Affiliation:
bertrand.donnio@ipcms.u-strasbg.fr, University Louis Pasteur, IPCMS, Strasbourg, France
Jose-Luis Serrano
Affiliation:
joseluis@unizar.es, University of Zaragoza, Organic Chemistry, Zaragoa, Spain
Robert Deschenaux
Affiliation:
robert.deschenaux@unine.ch, University of Neuchatel, Chemistry, Neuchatel, Switzerland
Get access

Abstract

LC-NANOP is an ESF EUROCORES SONS Collaborative Research Project that is addressing an innovative approach to self-organized nanostructures by combination of a variety of organic, inorganic and metal scaffolds with the unique self-organization properties of liquid crystals to obtain liquid crystal nano-particles. LC-NANOP is concerned with the synthesis, analysis, characterization, modeling and physico-chemical properties of super- and supra-molecular systems which are formed from a nano-particle as a central scaffold, surrounded by a layer of liquid crystal. The self-organization properties of the liquid crystal coating is the driving force leading to the self-assembly of the nano-particles into secondary or tertiary hierarchical structures, with emphasis on the systematic variation of nano-particle size, chirality, shape and functionality. This bottom-up approach to nano-structuring is very powerful as it combines the extraordinary variety of morphologies that liquid crystals present with the combination of functional entities, relevant for chemical, biological, optoelectronic, and photonic tasks, etc, to create ordered nano-structures that can be controlled by external stimuli.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ponomarenko, S. A., Boiko, N. I. and Shibaev, V., Polym. Sci. Ser. C, 43, 1; (2001).Google Scholar
2. Percec, V., Glodde, M., Bera, T. K., Miura, Y., Shiyanovskaya, I., Singer, K. D., Balagurusamy, V. S. K., Heiney, P. A., Schnell, I., Rapp, A., Spiess, H.-W., Hudson, S. D. and Duank, H., Nature, 419, 384 (2002).Google Scholar
3. Fréchet, J.-M., Chem. Rev., 101, 3819 (2001).Google Scholar
4. Goodby, J. W., Mehl, G. H., Saez, I. M., Tuffin, R. P., Mackenzie, G., Auzely-Velty, R., Benvegnu, T. and Plusquellec, D., Chem. Commun., 2057 (1998)Google Scholar
5. Tschierske, C., J. Mater. Chem., 8, 1485 (1998).Google Scholar
6. Saez, I. M., Goodby, J. W. and Richardson, R. M., Chem. Eur. J., 7, 2758 (2001).Google Scholar
7. Kanayama, N., Tsutsumi, O., Kanazawa, A. and Ikeda, T., Chem. Commun., 2640 (2001).Google Scholar
8. In, I., Jun, Y. -W., Kim, Y. J. and Kim, S. Y., Chem. Commun., 800 (2005).Google Scholar
9. Cseh, L. and Mehl, G., J. Am. Chem. Soc., 128, 13376 (2006).Google Scholar
10. Cseh, L. and Mehl, G., J. Mater. Chem., 17, 311 (2007).Google Scholar
11. Kumar, S. and Lakshminarayanan, V., Chem. Commun., 1600 (2004).Google Scholar
12. Yamada, M., Shen, Z. and Miyake, M., Chem. Commun., 2569 (2006).Google Scholar
13. Draper, M., Goodby, J. W. and Saez, I. M., In Press.Google Scholar
14. Bates, M., Liq. Cryst., 32, 1525 (2005).Google Scholar
15. de Gennes, P. -G, Angew. Chem. Int. Ed. Engl., 31, 842 (1992).Google Scholar
16. Stark, H., Phys. Rev. E, 66, 032701 (2002).Google Scholar
17. Saez, I. M. and Goodby, J. W., Chem. Commun., 1726 (2003).Google Scholar
18. Saez, I. M. and Goodby, J. W., Chem., Eur. J., 9, 4869 (2003).Google Scholar
19. Lenoble, J., Campidelli, S., Maringa, N., Donnio, B., Guillon, D., Yevlampieva, N. and Deschenaux, R., J. Am. Chem. Soc., 129, 9941 (2007).Google Scholar
20. Deschenaux, R., Donnio, B. and Guillon, D., New J. Chem., 31, 1064 (2007).Google Scholar
21. Saez, I. M. and Goodby, J. W., Structure and Bonding, 128, 1 (2008).Google Scholar
22. Goodby, J. W., Saez, I. M., Cowling, S. J., Görtz, V., Draper, M., Hall, A. W., Sia, S., Cosquer, G., Lee, S. -E. and Raynes, E. P., Angew. Chem. Int. Ed., 47, 2754 (2008).Google Scholar