Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T02:10:06.157Z Has data issue: false hasContentIssue false

Lithium Intercalation in Perovskite and Hexagonal Tungsten Bronze Derivatives

Published online by Cambridge University Press:  21 February 2011

C. Delmas
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Université de BORDEAUX I, 351 cours de la Libération, 33405 TALENCE Cedex, France
A. Nadiri
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Université de BORDEAUX I, 351 cours de la Libération, 33405 TALENCE Cedex, France
G. Le Flem
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Université de BORDEAUX I, 351 cours de la Libération, 33405 TALENCE Cedex, France
S.H. Chang
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Université de BORDEAUX I, 351 cours de la Libération, 33405 TALENCE Cedex, France
J.P. Chaminade
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Université de BORDEAUX I, 351 cours de la Libération, 33405 TALENCE Cedex, France
M. Menetrier
Affiliation:
Laboratoire de Chimie du Solide du CNRS, Université de BORDEAUX I, 351 cours de la Libération, 33405 TALENCE Cedex, France
Get access

Abstract

Lithium has been intercalated chemically and electrochemically in LnNb3O9 (Ln = La, Nd) perovskite-type phases and LiW3O9F which can be considered as a hexagonal tungsten bronze derivative.

The crystallographic formula of the LnNb3O9 starting material is □3/2 (Ln□1/2 )Nb3O9. In both systems, solid solutions are observed in the fir part of the intercalation reaction. While almost all perovskite cavities are filled in the neodymium phases, the higher ionic character of the La-O bonds prevents practically the Li intercalation in the □' sites.

In the LiW3O9F phase two lithium atoms can be electrochemically intercalated via a single phase mechanism. The reaction is completely reversible. For higher amounts of intercalation (x > 3), irreversible structural modifications occur.

In both systems the unit cell parameter variation is negligible during intercalation. This behavior results from the blocking up of the framework by Ln3+ ions in LnNb3O9 phases or by the stacking of the three octahedra triangular arrangement in the hexagonal tungsten bronze structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Iyer, P.N. and Smith, A.J., Acta Crystallogr. 23, 740 (1967).CrossRefGoogle Scholar
[2] Trounov, V.K., Kovba, L.N. and Afonckii, N.S., Vestik. Moskolsskovo Yniversiteta 1, 55 (1968).Google Scholar
[3] Moutou, J.M., Vlasse, M., Cervera-Marzal, M., Chaminade, J.P. and Pouchard, M., J. Sol. State Chem. 51, 190 (1984).Google Scholar
[4] Chaminade, J.P., Moutou, J.M., Villeneuve, G., Couzi, M., Pouchard, M. and Hagenmuller, P., J. Sol. State Chem. 65, 27 (1986).Google Scholar
[5] Chevalier, R. and Gasperin, M., Acad, C.R.. Sc. C267, 481 (1968).Google Scholar
[6] Deschanvres, A., Leparmentier, L. and Raveau, B., Bull. Soc. Chim. Fr., 3460 (1971).Google Scholar
[7] Mendiboure, A. and Delmas, C., Computer and Chemistry 11(3), 153 (1987).Google Scholar
[8] Magneli, A., Acta Chm. Scand. 7, 315 (1953).Google Scholar
[9] Cheng, K.H. and Whittingham, M.S., Solid State Ionics 1, 151 (1980.Google Scholar
[10] Wiseman, P.J. and Dickens, P.G., J. Sol. State Chem. 17, 91 (1976).Google Scholar
[11] Murphy, D.W., Greenblatt, M., Cava, R.J. and Zahurak, S.M., Solid State Ionics 5, 327 (1981).Google Scholar
[12] Cava, R.J., Santoro, A., Murphy, D.W., Zahurak, S. and Roth, R.S., J. Sol. State Chem. 42, 251 (1982).CrossRefGoogle Scholar
[13] Cava, R.J., Santoro, A., Murphy, D.W., Zahurak, S. and Roth, R.S., Solid State Ionics 5, 323 (1981).Google Scholar
[14] Cheng, K.H., Jacobson, A.J. and Whittingham, M.S., Solid State Ionics 5, 355 (1981).CrossRefGoogle Scholar
[15] Gerand, B., Desseine, J., Ndata, P. and Figlarz, M., Procceding of the 2nd European Conf. On Solid State Chem., (Metselar, R., Heijligers, J.M. and Schoonman, J. Eds), Studies in Inorganic Chemistry 3, 457 (1983).Google Scholar
[16] Gerand, B., Thesis, University of Picardie (France), 1984.Google Scholar
[17] Gerand, B., Nowogroki, G. and Figlarz, M., J. Sol. State Chem. 38, 312 (1981).Google Scholar
[18] Banks, E. and Goldstein, A., Inorg. Chem. 7, 966 (1968).Google Scholar