Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-05T16:45:59.925Z Has data issue: false hasContentIssue false

Local Doping of GaAs by Laser-Stimulated Diffusion From the Gas Phase

Published online by Cambridge University Press:  21 February 2011

H. KrÄutle
Affiliation:
Institute of Semiconductor Electronics, Technical University Aachen, Sommerfeldstrabe, 5100 Aachen / Frg
W. Roth
Affiliation:
Institute of Semiconductor Electronics, Technical University Aachen, Sommerfeldstrabe, 5100 Aachen / Frg
A. Krings
Affiliation:
Institute of Semiconductor Electronics, Technical University Aachen, Sommerfeldstrabe, 5100 Aachen / Frg
H. Beneking
Affiliation:
Institute of Semiconductor Electronics, Technical University Aachen, Sommerfeldstrabe, 5100 Aachen / Frg
Get access

Abstract

Semi-insulating GaAs as well as MOCVD GaAs layers have been doped in situ with Se in a MOCVD system. H2Se diluted in an H2 + AsH3 atmosphere, which avoids surface decomposition, is used as the doping source. The surface is heated locally for less than 1 μs with a 3-ns Nd-YAG-laser pulse (frequency doubled: λ = 532 nm, pulse ratio 5 s−1). During this short time adsorbed Se atoms are incorporated into the heated surface region.

This process allows us to achieve heavily doped thin layers with Se concentrations in the order of 1021 cm−3. Outside the irradiated area the crystal remains undoped.

Se concentrations measured with secondary ion mass spectroscopy (SIMS) and carrier concentrations measured with the van der Pauw method indicate the diffusion of adsorbed Se atoms into GaAs. The distribution and activation of Se depends on laser power and substrate temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stuck, R., Fogarassy, E., Grob, J. J., and Siffert, P., Appl. Phys. 23, 15 (1980).CrossRefGoogle Scholar
2. Liu, S. G., Wu, C. P., and Magee, C. W., Laser and Electron Beam Processing of Materials, eds. White, C. W. and Peercy, P. S., Academic Press, NY, 341 (1980).CrossRefGoogle Scholar
3. Stuck, R., Fogarassy, E., Muller, J. C., Grob, A., Grob, J. J., and Siffert, P., 14th IEEE Photovoltaic Specialists Conference 1980, San Diego, CA, USA (N. Y. USA IEEE 1980, p. 829.Google Scholar
4. Deutsch, T. F., Ehrlich, D. J., Osgood, R. M. Jr., and Liau, Z. L., Appl. Phys. Lett. 36, 847 (1980).CrossRefGoogle Scholar
5. Stuck, R., Fogarassy, E., Muller, J. C., Hodeau, M., Wattiaux, J., and Siffert, P., Appl. Phys. Lett. 38, 715 (1981).CrossRefGoogle Scholar
6. Roth, W., Kräutle, H., Krings, A., and Beneking, H., Mat. Res. Soc. Symp. Proc. 17, 193 (1983).CrossRefGoogle Scholar
7. Zölch, R., Ryssel, H., Kranz, H., Reichl, H., and Ruge, I., Ion Implantation in Semiconductors, eds. Chernow, F., Borders, J. A., and Brice, D. K., Plenum Press, New York, p. 593 (1977).Google Scholar
8. Pospieszczyk, A., Harith, M. A., and Stritzker, B., J. Appl. Phys. 54, 3176 (1983).CrossRefGoogle Scholar
9. de Jong, T., Wang, Z. L., and Saris, F. W., Phys. Lett. 90A, 147 (1982).CrossRefGoogle Scholar