Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T20:48:18.047Z Has data issue: false hasContentIssue false

Localised States in Microcrystalline Silicon Photovoltaic Structures Studied by Post-Transit Time-of-Flight Spectroscopy

Published online by Cambridge University Press:  01 February 2011

Steve Reynolds
Affiliation:
School of Computing and Advanced Technologies, University of Abertay Dundee, Bell Street, DundeeU.K.
Vladimir Smirnov
Affiliation:
School of Computing and Advanced Technologies, University of Abertay Dundee, Bell Street, DundeeU.K.
Charlie Main
Affiliation:
School of Computing and Advanced Technologies, University of Abertay Dundee, Bell Street, DundeeU.K.
Reinhard Carius
Affiliation:
Forschungszentrum Jülich, Institute for Photovoltaics, D-52425 Jülich, Germany.
Friedhelm Finger
Affiliation:
Forschungszentrum Jülich, Institute for Photovoltaics, D-52425 Jülich, Germany.
Get access

Abstract

Post-transit time-of-flight spectroscopy has been used to study the density of states distribution in hot-wire CVD microcrystalline silicon pin solar cell structures. For an absorber layer Raman scattering intensity ratio ICRS of 0.4 or less, behaviour consistent with multiple-trapping carrier transport is observed and may be interpreted in terms of a conduction-band tail of some 18 meV slope plus a broad defect bump of order 1017 cm-3 centered at 0.55 eV relative to the mobility edge. As ICRS is increased beyond 0.4, the temperature-dependence of the photocurrent transient becomes inconsistent with multiple-trapping and above 0.6 the decays are almost temperature-independent. By comparing data taken at 300 K, it may be inferred from the multiple-trapping model that localised states between 0.35 and 0.5 eV are associated with the presence of columns or clusters of nanocrystals and those deeper than 0.5 eV with the amorphous tissue. Results are compared with previous work on coplanar and sandwich structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klein, S., Finger, F., Carius, R., Rech, B., Houben, L., Luysberg, M. and Stutzmann, M., MRS Symp. Proc. 715, A21.2.1 (2002).Google Scholar
2. Wyrsch, N., Feitnecht, L., Droz, C., Torres, P., Shah, A., Poruba, A. and Vaněček, M., J. NonCryst. Solids 266-269, 1099 (2000).Google Scholar
3. Reynolds, S., Smirnov, V., Main, C., Carius, R. and Finger, F., MRS Symp. Proc. 715, A21.2.1 (2002).Google Scholar
4. Beck, N., Torres, P., Fric, J., Remeš, Z., Poruba, A., Stuchlíková, H., Fejfar, A., Wyrsch, N., Vaněček, M., Kočka, J. and Shah, A., MRS Symp. Proc. 452, 761 (1997).Google Scholar
5. Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F. and Wagner, H., Philos. Mag. A 77, 1447 (1998).Google Scholar
6. Finger, F., Klein, S., Dylla, T., Neto, A.L. Baia, Vetterl, O. and Carius, R., MRS Symp. Proc. 715, A16.3.1 (2002).Google Scholar
7. Seynhaeve, G.F., Barclay, R.P., Adriaenssens, G.J. and Marshall, J.M., Phys. Rev. B39, 10196 (1989).Google Scholar
8. Main, C., J. Non-Cryst. Solids 299-302, 525 (2002).Google Scholar
9. Main, C., Berkin, J. and Merazga, A., in New Physical Problems in Electronic Materials, eds. Borissov, M., Kirov, N., Marshall, J.M. and Vavrek, A. (World Scientific, 1991), p55.Google Scholar
10. Ruff, D., Mell, H., Tóth, L., Sieber, I. and Fuhs, W., J. Non-Cryst. Solids 227-230, 1011 (1998).Google Scholar
11. Kočka, J., Stuchlíková, H., Stuchlík, J., Rezek, B., Mates, T., Švrček, V., Fojtík, P., Pelant, I. and Fejfar, A., J. Non-Cryst. Solids 299-302, 355 (2002).Google Scholar
12. Fejfar, A., Beck, N., Stuchlíková, H., Wyrsch, N., Torres, P., Meier, J., Shah, A. and Kočka, J., J. Non-Cryst. Solids 227-230, 1006 (1998).Google Scholar
13. Finger, F., Müller, J., Malten, C. and Wagner, H., Philos. Mag. B 77, 805 (1998).Google Scholar
14. Yue, G., Lorentzen, J.D., Lin, J., Han, D. and Wang, Q., Appl. Phys. Lett. 75, 492 (1999).Google Scholar