Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-04T13:57:40.020Z Has data issue: false hasContentIssue false

Loss Peaks in the AC Conductivity of a-Si:H

Published online by Cambridge University Press:  21 February 2011

L. Schirone
Affiliation:
Università di Roma “La Sapienza”, Dipartimento di Ingegneria Elettronica, Via Eudossiana n. 18, 00184 Roma, ITALY
Ya. Yu. Guseinov
Affiliation:
Università di Roma “La Sapienza”, Dipartimento di Ingegneria Elettronica, Via Eudossiana n. 18, 00184 Roma, ITALY
G. De Cesare
Affiliation:
Università di Roma “La Sapienza”, Dipartimento di Ingegneria Elettronica, Via Eudossiana n. 18, 00184 Roma, ITALY
A. Ferrari
Affiliation:
Università di Roma “La Sapienza”, Dipartimento di Ingegneria Elettronica, Via Eudossiana n. 18, 00184 Roma, ITALY
F.P. Califano
Affiliation:
Università di Roma “La Sapienza”, Dipartimento di Ingegneria Elettronica, Via Eudossiana n. 18, 00184 Roma, ITALY
Get access

Abstract

The electrical conductivity of a-Si:H films was investigated in the temperature range 300K - 450K under an alternative electric field whose frequency was in the range 100 Hz - 6×106 Hz. Loss peaks were detected, located at a temperature dependent frequency and superimposed to a nearly linear dependence on frequency. Their amplitude has found to be sensitive to Staebler-Wronski Effect. The observed photodegradation-sensitive loss peaks have been described in terms of a Simple Pair Hopping (SPH) mechanism, involving the electronic states associated to dangling bonds, superimposed to a broadband process described by Correlated Barrier Hopping (CBH) model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mott, N.F., and Davis, E.A., “Electronic processes in non-crystalline materials” (2nd Ed.) Oxford University Press (1979)Google Scholar
[2] Long, A.R., Adv. Phys., Vol. 31 (1982) p. 553637 Google Scholar
[3] Elliott, S.R., Adv. Phys., Vol. 36 (1987) p. 135218 CrossRefGoogle Scholar
[4] Spear, W.E., “Amorphous silicon and related materialsWSPC (1988) p. 721–65Google Scholar
[5] Pollak, M., and Geballe, T.H., Phys. Rev., Vol. 122 (1961) p. 1742 Google Scholar
[6] Takano, Y., Kitao, M., and Yamada, S., Phil. Mag. B, Vol. 55 (1987) p. 515522 Google Scholar
[7] Staebler, D.L., and Wronski, C.R., Appl. Phys. Lett, Vol 31, n. 4 (15 Aug 1977) p. 292–4Google Scholar
[8] Abkowitz, M., Le Comber, P.G., and Spear, W.E., Commun. Phys., vol. 1, n. 6 (Aug. 1976) p. 175–82Google Scholar
[9] Balkan, N., Butcher, P.N., Hogg, W. R., Long, A.R., and Summer-field, S., Phil. Mag. B, Vol. 51, n.l (1985) L712 Google Scholar
[10] Street, R.A., and Yoffe, A.D., J. non-cryst. Sol., Vol. 8–10 (1972) p. 745 Google Scholar
[11] Stutzmann, M., Jackson, W.B., and Tsai, C.C., Phys. Rev. B, Vol. 32, n. 1 (1 July 1985) p. 2347 Google Scholar
[12] Yamazaki, M., Nakata, J., Imao, S., Shirafuji, J., and Inuishi, Y., Jpn. J. Appl. Phys. 1, Vol. 28, n. 4 (April 1989) p. 577–85CrossRefGoogle Scholar
[13] Schirone, L., Guseinov, Ya. Yu., Ferrari, A., Califano, F.P., “A.C. electrical conductivity of a-Si:H”, Physica Status Solidi (a), Vol. 131, n. 1 (May 1992)Google Scholar