Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-15T20:58:33.009Z Has data issue: false hasContentIssue false

Low Magnetic Field Response of 2d-Array of Weakly Coupled Ferromagnets

Published online by Cambridge University Press:  10 February 2011

Z. G. Ivanov
Affiliation:
Department of Microelectronics and Nanoscience, Chalmers University of Technology and University of Göteborg, S-412 96 Göteborg, Sweden
R. A. Chakalov
Affiliation:
Department of Microelectronics and Nanoscience, Chalmers University of Technology and University of Göteborg, S-412 96 Göteborg, Sweden
T. Claeson
Affiliation:
Department of Microelectronics and Nanoscience, Chalmers University of Technology and University of Göteborg, S-412 96 Göteborg, Sweden
Get access

Abstract

We demonstrated a low magnetic field response in 2D array of weakly coupled ferromagnets created by bi-epitaxial growth of La0.7Sr0.3MnO3 film on multilayer template of MgO seed and CeO2 buffer layer deposited on SrTiO3 substrate. To form the array we etched the MgO seed layer into a chess board pattern. The chess board fields, where the substrate surface is disclosed, initiate a 45° in-plate rotated growth of the CeO2 buffer layer while it does not rotate on the neighboring fields covered by MgO seed layer. The La0.7Sr0.3MnO3 film inherits the template orientation of the buffer layer forming misoriented at 45° domains and a well defined 2D array of 45° grain boundaries is created. The size of the domains, correspondingly the number of grain boundaries, can be varied by changing the dimensions of the chess board fields. The multilayer structures were investigated by θ–2θ and φ-scan x-ray diffraction. A magnetoresistance of 25% by 0.5 T was measured and ascribed to the properties of the 2D array of grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hwang, H.Y., Cheong, S.-W., Ong, N.P., and Batlogg, B., Phys. Rev. Lett., 77, 2041 (1996).10.1103/PhysRevLett.77.2041Google Scholar
2. Shreekala, R., Rajeswari, M., Ghosh, K., Goyal, A., Gu, J.Y., Kwon, C., Trajanovic, Z., Boettcher, T., Green, R.L., Ramesh, R., and Venkatesan, T., Appl. Phys. Lett., 71, 282 (1997).10.1063/1.119520Google Scholar
3. Gu, J.Y., Ogale, S.B., Rajeswary, M., Venkatesan, T., Ramesh, R., Radmilovic, V., Dahmen, U., Thomas, G., and, Noh, T.W., Appl. Phys. Lett., 72, 1113 (1998).10.1063/1.120940Google Scholar
4. Sun, J.Z., Galagher, W.J., Duncombe, P.R., Krusin-Elbaum, L., Altman, R.A., Gupta, A., Lu, Yu, Gong, G.Q., and Xiao, G., Appl. Phys. Lett., 69 3266 (1996).10.1063/1.118031Google Scholar
5. Steenbeck, K., Eick, T., Kirsh, K., O'Donnell, K., and Steinbeiss, E., Appl. Phys. Lett., 71, 968 (1997).10.1063/1.119702Google Scholar
6. Isaac, S.P., Mathur, N.D., Evetts, J.E., and Blamire, M.G., Appl. Phys. Lett., 72, 2038 (1998).10.1063/1.121257Google Scholar
7. Kwon, C., Jia, Q. X., Fan, Y., Gong, G.Q., and Xiao, G., Appl. Phys. Lett., 69 3266 (1996)., M.F. Hundlay, and D.W. Reagor, J. Appl. Phys., 83, 7052 (1998).Google Scholar
8. Char, K., Colclough, M.S., Garrison, S.M., Newman, N., and Zaharchuk, G., Appl. Phys. Lett. 59, 733 (1991).10.1063/1.105355Google Scholar
9. Ivanov, Z.G., Stepantsov, E.A., Tzalenchuck, A. Ya., Shekhter, R.I., and Claeson, T., IEEE Trans. Appl. Superconductivity, 3, p. 2925– (1993).10.1109/77.234013Google Scholar
10. Helman, J.S. and Abeles, B., Phys. Rev. Lett. 37, 1429 (1976).10.1103/PhysRevLett.37.1429Google Scholar