Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-05T02:42:23.237Z Has data issue: false hasContentIssue false

Low Pressure Band Tuning in Wurtzite CdSe Quantum Dots

Published online by Cambridge University Press:  17 March 2011

R.W. Meulenberg
Affiliation:
Department of Chemistry, University of California, Santa Barbara CA 93106
H.W. Offen
Affiliation:
Department of Chemistry, University of California, Santa Barbara CA 93106
G.F. Strouse
Affiliation:
Department of Chemistry, University of California, Santa Barbara CA 93106, strouse@chem.ucsb.edu
Get access

Abstract

Several studies to date have probed structural phase transitions in quantum dots (QDs) at high pressure. At low pressure (< 1 GPa), the optical properties of solvated nanomaterials are modulated by pressure induced electronic level tuning, particularly for surface and trap states. In fact, low pressure studies on solvated CdSe QDs may provide insight into the participation of surface hole traps and electron traps on the excited state optical properties in these materials. We report findings of QD size dependent pressure coefficients and postulate that trap state tuning, surface reconstruction events, and electron-hole exchange interactions may play a role in the low-pressure regime.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Alivisatos, A. P., Journal of Physical Chemistry 100, 1322613239 (1996).Google Scholar
2 Steigerwald, M. L. and Brus, L. E., Accounts of Chemical Research 23, 183188 (1990).Google Scholar
3 Chow, G.-M., Gonsalves, K. E., American Chemical Society. Division of Polymeric Materials: Science and Engineering, and American Chemical Society. Meeting, Nanotechnology : molecularly designed materials (American Chemical Society, Washington, DC, 1996).Google Scholar
4 Schroeder, J. and Persans, P. D., Journal of Luminescence 70, 6984 (1996).Google Scholar
5 Fu, H. X., Wang, L. W., and Zunger, A., Physical Review B-Condensed Matter 59, 55685574 (1999).Google Scholar
6 Nirmal, M., Norris, D. J., Kuno, M., Bawendi, M. G., Efros, A. L., and Rosen, M., Physical Review Letters 75, 37283731 (1995).Google Scholar
7 Chamarro, M., Dib, M., Voliotis, V., Filoramo, A., Roussignol, P., Gacoin, T., Boilot, J. P., Delerue, C., Allan, G., and Lannoo, M., Physical Review B-Condensed Matter 57, 37293732 (1998).Google Scholar
8 Banin, U., Lee, J. C., Guzelian, A. A., Kadavanich, A. V., and Alivisatos, A. P., Superlattices and Microstructures 22, 559567 (1997).Google Scholar
9 Khitrov, G. A. and Strouse, G. F., (manuscript in preparation).Google Scholar
10 Murray, C. B., Norris, D. J., and Bawendi, M. G., Journal of the American Chemical Society 115, 87068715 (1993).Google Scholar
11 Hines, M. A. and Guyot-Sionnest, P., Journal of Physical Chemistry 100, 468471 (1996).Google Scholar
12 Dawson, D. R. and Offen, H. W., Review of Scientific Instruments 51, 13491351 (1980).Google Scholar
13 Menoni, C. S., Miao, L., Patel, D., Mic'ic, O. I., and Nozik, A. J., Physical Review Letters 84, 41684171 (2000).Google Scholar
14 Patel, A. A., Wu, F., Zhang, J. Z., Torres-Martinez, C. L., Mehra, R. K., Yang, Y., and Risbud, S. H., Journal of Physical Chemistry B (2000).Google Scholar
15 Pankove, J. I., Optical processes in semiconductors (Dover, New York, 1975).Google Scholar