Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T20:52:28.861Z Has data issue: false hasContentIssue false

Low Temperature (150–250°C) Deposition of n+ and p+ Microcrystalline Silicon for VLSI Device Contacts

Published online by Cambridge University Press:  22 February 2011

G. Rajeswaran
Affiliation:
Division of Metallurgy and Materials ScienceBrookhaven National Laboratory, Upton, New York 11973
P. E. Vanier
Affiliation:
Division of Metallurgy and Materials ScienceBrookhaven National Laboratory, Upton, New York 11973
F. J. Kampas
Affiliation:
Division of Metallurgy and Materials ScienceBrookhaven National Laboratory, Upton, New York 11973
R. R. Corderman
Affiliation:
Division of Metallurgy and Materials ScienceBrookhaven National Laboratory, Upton, New York 11973
Get access

Abstract

The rf glow discharge decomposition of dilute mixtures (∼1%) of SiH4 in H2, with suitable doping agents such as PH3 or B2 H6 added, produces n+ and p+ microcrystalline (μc) silicon films with resistivities (ρ) in the 10−1 Ω.cm range at exceedingly low substrate temperatures Ts (150–250°C). The μc-Si films consist of two phases with crystalline clusters embedded in an amorphous matrix. The films are stable when temperature-cycled in the 30–400°C range and the resistivity decreases when annealed above the original deposition temperature. A model of microcrystalline film growth involving the reactions between the gas phase radicals and the growing film surface is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Adams, A. C., in VLSI Technology, Sze, S. M., ed., (McGraw-Hill, New York, 1983) pp. 103105.Google Scholar
2. Veprek, S., Iqbal, Z., Oswald, H. R., Sarott, F. A., and Wagner, J. J., 9th Intern. Conf. on Amorphous and Liquid Semiconductors, July 1981, Grenoble, J. Phys. (Paris) C4, 251 (1981).Google Scholar
3. Mishima, Y., Miyazaki, S., Hirose, M., and Osaka, Y., Phil. Mag. B46, 1 (1982).Google Scholar
4. Willeke, G., Spear, W. E., Jones, D. I., and LeComber, P. G., Phil. Mag. B46, 177 (1982)Google Scholar
5. Carlson, D. E., Crandall, R. S., Dresner, J., Goldstein, B., Hanak, J. J., Moore, A. R., DRedfield, H. E. Schade, and H. A. Weakliem, “Amorphous Silicon Solar Cells,” Final Report, SERI/PR-0–9372–5, 74, March 1982.Google Scholar
6. Rajeswaran, G., Kampas, F. J., Vanier, P. E., Sabatini, R. L., and Tafto, J., Appl. Phys. Lett. 43(11), 1045 (1983).Google Scholar
7. Kampas, F. J. and Griffith, R. W., J. Appl. Phys. 52, 1285 (1981).Google Scholar
8. Perrin, J. and Schmitt, J. P. M., Chem. Phys. 67, 167 (1982).Google Scholar
9. Robertson, R., Hills, D., Chatham, H., and Gallagher, A., Appl. Phys. Lett. 43, 544 (1983).CrossRefGoogle Scholar
10. Kampas, F. J., J. Appl. Phys. 53, 6408 (1982).CrossRefGoogle Scholar
11. Perkins, G. G. A., Austin, E. R., and Lampe, F. W., J. Am. Chem. Soc. 101, 1109 (1979).Google Scholar