Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T15:44:34.268Z Has data issue: false hasContentIssue false

Low Temperature Photoluminescence Study of Doped CdTe and CdMnte Films Grown by Photoassisted Molecular Beam Epitaxy

Published online by Cambridge University Press:  25 February 2011

N. C. Giles
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina, 27695-8202
R. N. Bicknell
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina, 27695-8202
J. F. Schetzina
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina, 27695-8202
Get access

Abstract

N-type and p-type (100) CdTe films have been grown on (100) CdTe substrates by photoassisted molecular beam epitaxy, using indium and antimony as n-type and p-type dopants, respectively. The application of this growth technique to substitutionally dope another II-VI material is demonstrated by the successful n-type doping of (100) CdMnTe films with indium. Modulationdoped superlattices consisting of barrier layers of CdMnTe:In alternating with CdTe have also been grown. The point defect nature of these in situ doped films and multilayers is studied with low temperature (1.6–5 K) photoluminescence and excitation photoluminescence measurements. The introduction of the dopant atoms using this new growth technique produces immediate changes in the photoluminescence spectra of the epilayers. Photoluminescence studies of the superlattices show the effects of quantum well confinement and band filling due to free carriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bicknell, R. N., Giles, N. C., and Schetzina, J. F., Appl. Phys. Lett. 49, 1095 (1986)CrossRefGoogle Scholar
2. Bicknell, R. N., Giles, N. C., and Schetzina, J. F., scheduled to appear in the December 22, 1986 issue of Appl. Phys. Lett. (manuscript L-8403).Google Scholar
3. Bicknell, R. N., Giles, N. C., and Schetzina, J. F., Proc. of the 1986 U.S.Workshop on the Physics and Chemistry of MCT, to be published in the Nov. 1987 issue of J. Vac. Sci. and Technol. A.Google Scholar
4. Bicknell, R. N., Giles, N. C., and Schetzina, J. F., Proc. of the 1986 MRS Symposium on “Materials for Infrared Detectors and Sources”, Boston, Mass.Google Scholar
5. Giles, N. C., Bicknell, R. N., and Schetzina, J. F., Proc. of the 1986 U.S.Workshop on the Physics and Chemistry of MCT, to be published in the Nov. 1987 issue of J. Vac. Sci. and Technol. A.Google Scholar
6. Barnes, C. E. and Zanio, K., J. Appl. Phys. 46, 3959 (1975).CrossRefGoogle Scholar
7. Norris, C. B. and Zanio, K., J. Appl. Phys. 53, 6347 (1982)CrossRefGoogle Scholar
8. Sugiyama, K., Jpn. J. Appl. Phys. 46, 665 (1982).CrossRefGoogle Scholar
9. Marfaing, Y., Revue de Phys. Appl. 12, 211 (1977)CrossRefGoogle Scholar
10. Agrinskaya, N. V., Arkad'eva, E. N., and Matveev, O. A., Sov. Phys. Semicond. 5, 767 (1971).Google Scholar
11. Pautrat, J. L., Francou, J. M., Magnea, N., Molva, E., and Saminadayar, K., J. of Crystal Growth 72, 194 (1985).CrossRefGoogle Scholar
12. Becla, P., Kaiser, D., Giles, N. C., Lansari, Y., and Schetzina, J. F., accepted for publication in J. of Appl. Phys.Google Scholar
13. Bicknell, R. N., Giles, N. C., and Schetzina, J. F., submitted to Appl. Phys.Lett.Google Scholar
14. Blanks, D. K., Bicknell, R. N., Giles-Taylor, N. C., Schetzina, J. F., Petrou, A., and Warnock, J., J. Vac. Sci. Technol. A 4, 2120 (1986).CrossRefGoogle Scholar