Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T19:37:12.142Z Has data issue: false hasContentIssue false

Low Temperature Si Homoepitaxy: Effects of Impurities on Microstructure

Published online by Cambridge University Press:  15 February 2011

D. P. Adamst
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, N.J., 07974. Department of Materials Science and Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI, 48109-2136.
D. J. Eaglesham
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, N.J., 07974.
S. M. Yalisove
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, N.J., 07974.
Get access

Abstract

Hydrogen is shown to influence the surface roughness during low temperature Si MBE. Small partial pressures (1 × 10-7 Torr) of deuterium, introduced during Si growth at 310°C, are sufficient to increase the surface width to ∼30 Å before breakdown of epitaxy. This work is consistent with previous studies of the dependence of epitaxial thickness on hydrogen partial pressure and supports a model in which surface roughening leads to the breakdown of epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gossmann, H. -J. and Feldman, L. C., Appl. Phys. A 38, 171 (1985).CrossRefGoogle Scholar
2. Eaglesham, D. J., Gossmann, H.-J., and Cerullo, M., Phys. Rev. Lett. 65, 1127 (1990).CrossRefGoogle Scholar
3. Eaglesham, D. J. and Cerullo, M., Appl. Phys. Lett. 58, 2276 (1991).CrossRefGoogle Scholar
4. Eaglesham, D. J., Pfeiffer, L. N., West, K. W., and Dykaar, D. R., Appl. Phys. Lett. 58, 65 (1991).CrossRefGoogle Scholar
5. Sinniah, K., Sherman, M. G., Lewis, L. B., Weinberg, W. H., Yates, J. T., and Janda, K. C., J. Chem. Phys. 92, 5700 (1990).CrossRefGoogle Scholar
6. Eaglesham, D. J., Unterwald, F. C., Higashi, G. S., Luftman, H. F., Adams, D. P., and Yalisove, S. M., 1993 (unpublished J. Appl. Phys).Google Scholar
7. Perovic, D. D., Weatherly, G. C., Simpson, P. J., Schultz, P. J., Jackman, T. E., Aers, G. C., Noel, J. -P. and Houghton, D. C., Phys. Rev. B. 43, 4257 (1991).CrossRefGoogle Scholar
8. Yalisove, S. M., Adams, D. P., and Karpenko, O. P., 1993 (unpublished).Google Scholar
9. Mo, Y. W., Kleiner, J., Webb, M. B., and Lagally, M. G., Phys. Rev. Lett. 66 (1991).CrossRefGoogle Scholar
10. Eaglesham, D. J., Gilmer, G., Jacobson, D. C., West, K., Pfeiffer, L. N., Adams, D. P., Yalisove, S. M., and Karpenko, O. P., 1993 (Mat. Res. Soc. Symp. Proc.).Google Scholar
11. Kardar, M., Parisi, G., and Zhang, Y.-C., Phys. Rev. Lett., 56, 889 (1986).CrossRefGoogle Scholar
12. Tang, L.-H., Forrest, B. M., and Wolf, D. E., Phys. Rev. A 45, 7162 (1992).CrossRefGoogle Scholar