Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-20T09:34:46.700Z Has data issue: false hasContentIssue false

Low-Temperature Epitaxial Growth of IN-Situ HeavilY B-Doped Si1-xGex, Films Using Ultraclean LPCVD

Published online by Cambridge University Press:  10 February 2011

A. Morrya
Affiliation:
Laboratory for Electronic Intelligent Systems, RIEC, Tohoku University, Sendai 980-8577, Japan, murota@riec.tohoku.ac.jp
M. Sakuraba
Affiliation:
Laboratory for Electronic Intelligent Systems, RIEC, Tohoku University, Sendai 980-8577, Japan, murota@riec.tohoku.ac.jp
T. Matsuura
Affiliation:
Laboratory for Electronic Intelligent Systems, RIEC, Tohoku University, Sendai 980-8577, Japan, murota@riec.tohoku.ac.jp
J. Murota
Affiliation:
Laboratory for Electronic Intelligent Systems, RIEC, Tohoku University, Sendai 980-8577, Japan, murota@riec.tohoku.ac.jp
I. Kawashima
Affiliation:
Atsugi Material Analysis Center, NIT Advanced Technology Corp., Atsugi 243-0124, Japan
N. Yabumoto
Affiliation:
Atsugi Material Analysis Center, NIT Advanced Technology Corp., Atsugi 243-0124, Japan
Get access

Abstract

In-situ heavy doping of B into Si1-xGex epitaxial films on the Si(100) substrate have been investigated at 550°C in a SiH4(6.0Pa)-GeH4(0.1−6.0Pa)-B2H6(1.25 ×10−5−3.75 × 10−2Pa)-H2(17–24Pa) gas mixture by using an ultraclean hot-wall low-pressure CVD system. The deposition rate increased with increasing GeH4 partial pressure, and it decreased with increasing B2H6 partial pressure only at the higher GeH4 partial pressure. As the B2H6 partial pressure increased, the Ge fraction scarcely changed although the lattice constant of the film decreased. These characteristics can be explained by the suppression of both the SiH4 and GeH4 adsorption/reactions in a similar degree due to B2H6 adsorption on the Si-Ge and/or Ge-Ge bond sites. The B concentration in the film increased proportionally up to 1022cm3 with increasing B2H6 partial pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Patton, G. L., Comfort, J. H., Meyerson, B. S., Crabbe, E. F., Scilla, G. J., Fresart, E. D., Stork, J. M. C., Sun, J. Y. C., Harame, D. L. and Burghartz, J. N., IEEE Electron Device Lett. EDL-11 171 (1990).Google Scholar
[2] Sturm, J. C., Prinz, E. J. and Magee, C. W., IEEE Electron Device Lett. EDL-13 56 (1992).Google Scholar
[3] Goto, K., Murota, J., Honma, F., Matsuura, T. and Sawada, Y., in ULSI Science and Technology/1995, Electrochemical Society, PV95–5, p.512(1995).Google Scholar
[4] Murota, J., Ishii, M., Goto, K., Sakuraba, M., Matsuura, T., Kudo, Y. and Koyanagi, M.; in 27th ESSDERC'97, ed. Griinbacher, H., p.376 (1997).Google Scholar
[5] Tsai, C., Jang, S. M., Tsai, J. and Reif, R., J.Appl.Phys. 69 8158 (1991).Google Scholar
[6] Kühne, H., Appl.Phys.Lett. 62 1967 (1993).Google Scholar
[7] Jang, S. M., Liao, K. and Reif, R., Appl.Phys.Lett. 62 1675 (1993).Google Scholar
[8] Lee, C. J., Sakuraba, M., Matsuura, T. and Murota, J., in CVD-X IV/1997, Electrochemical Society, PV97–25, p.1356(1997).Google Scholar
[9] Murota, J., Nakamura, N., Kato, M., Mikoshiba, N. and Ohmi, T., Appl.Phys.Lett. 54 1007 (1989).Google Scholar
[10] Murota, J., Honma, F., Yoshida, T., Goto, K., Maeda, T., Aizawa, K. and Sawada, Y., J.Phys.IV France 3 C3427(1993).Google Scholar
[11] Bauer, S. H., Shepp, A. and EmcCoy, R., J. Am. Chem. Soc., 78, 5775(1956).Google Scholar