Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T16:13:31.115Z Has data issue: false hasContentIssue false

Luminescence properties of amorphous AlN thin film phosphors incorporated with mixtures of Tb, Cu or Cu, Cr

Published online by Cambridge University Press:  17 March 2011

Andrea L. Martin
Affiliation:
Condensed Matter & Surface Science Program Ohio University Athens, OH 45701
Meghan L. Caldwell
Affiliation:
Condensed Matter & Surface Science Program Ohio University Athens, OH 45701
Martin E. Kordesch
Affiliation:
Condensed Matter & Surface Science Program Ohio University Athens, OH 45701
Chance M. Spalding
Affiliation:
Condensed Matter & Surface Science Program Ohio University Athens, OH 45701
Paul G. Van Patten
Affiliation:
Condensed Matter & Surface Science Program Ohio University Athens, OH 45701
Hugh H. Richardson
Affiliation:
Condensed Matter & Surface Science Program Ohio University Athens, OH 45701
Get access

Abstract

Amorphous thin films of AlN doped with Cu (blue luminescence), Tb (green luminescence) and Cr (red luminescence) were deposited on p-doped Si (111) substrates using RF magnetron sputtering in a nitrogen atmosphere and made luminescent active by heat treatment at 1000°C. Single layered amorphous AlN films deposited with Tb and Cu showed cathodoluminescence from only the Tb3+ ions. Presumably, energy is transferred from Cu luminescence centers to Tb centers in close proximity. In contrast to this, double layered amorphous AlN films doped with Cu (∼200 nm) on top of Tb (∼50 nm) emits from both ions. This behavior is observed in a double layered amorphous AlN film doped with Cu (∼200 nm) on top of a Cr (∼200 nm) doped film. Secondary-ion mass spectrometry depth profiling revealed that the incorporated metals moved from one layer into the other during the heat treatment step necessary for luminescence activation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jain, S.C., Willander, M., Narayan, J., Overstraeten, R. Van, J. Appl. Phys. 87, 965 (2000).Google Scholar
2. Steckl, A. J., Birkhahn, R., Appl. Phys. Lett. 73, 1700 (1998).Google Scholar
3. Heikenfeld, J., Garter, M., Lee, D.S., Birkhahn, R., Steckl, A. J., Appl. Phys Lett. 75, 1189 (1999).Google Scholar
4. Birkhahn, R., Garter, M., Steckl, A. J., Appl. Phys. Lett. 74, 2161 (1999).Google Scholar
5. Steckl, A.J., Garter, M., Lee, D.S., Heikenfeld, J., Birkhahn, R., Appl. Phys Lett. 75, 2184 (1999).Google Scholar
6. Jadwisienczak, W.M., Lozykowski, H.J., Perjeru, F., Chen, H., Kordesch, M., Brown, I.G., Appl. Phys. Lett. 76, 3376 (2000).Google Scholar
7. Lozykowski, H.J., Jadwisienczak, W.M., Appl. Phys. Lett. 74, 1129 (1999).Google Scholar
8. Caldwell, M.L., Martin, A.L., Dimitrova, V.I., Patten, P.G. Van, Kordesch, M.E., Richardson, H.H., submitted to Appl. Phys. Lett. (2000).Google Scholar
9. Caldwell, M. L., Martin, A. L., Spalding, C. M., Dimitrova, V. I., Patten, P. G. Van, Kordesch, M.E., and Richardson, H. H., submitted to Journal of Vacuum Science and Technology A. (2000).Google Scholar
10. Tucceri, R.C., Bland, C.D., Caldwell, M.L., Ervin, M.H., Magtoto, N.P., Spalding, C.M., Wood, M.A., Richardson, H.H., Mat. Res. Soc. Symp. Proc. 572, 413 (1999).Google Scholar