Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-07T17:26:06.348Z Has data issue: false hasContentIssue false

Magnetic Hardening Induced by Exchange Coupling in Mechanically Milled Antiferromagnetic - Ferromagnetic Composites

Published online by Cambridge University Press:  21 February 2011

J. Sort
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
J. Nogués
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
X. Amils
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
S. Suriñach
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
J.S. Muñoz
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
M.D. Baró
Affiliation:
Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Get access

Abstract

Mechanical milling has been used to synthesize ferromagnetic (FM, Co) - antiferromagnetic (AFM, NiO) composites. The coercivity, HC, and energy product, BHMax, of these composites can be enhanced at room temperature after appropriate heat treatments above the Néel temperature of the AFM, TN. Although the maximum Hc is achieved for the (NiO)1: 1 (Co) weight ratio, BHMax is further enhanced for the (NiO)2:3(Co) ratio, where higher saturation magnetization is obtained due to the larger amount of FM. Exchange coupling, responsible for these effects, decreases as the temperature is increased and vanishes close to TN. The thermal stability of the coercivity enhancement remains rather insensitive to the somewhat broad distribution of blocking temperatures of this system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Benjamin, J. S., Metall. Trans. 1, 2943 (1970); Mater. Sci. Forum 88-90, 1 (1992).Google Scholar
2.For a review, see Murty, B. S. and Ranganathan, S., Inter. Mater. Rev. 43, 101 (1998).Google Scholar
3.For a review, see Siegel, R. W., Nanostruct. Mater. 3, 1 (1993).Google Scholar
4. McCormick, P. G., Miao, W. R., Smith, P. A. I., Ding, J., Street, R., J. Appl. Phys. 83, 6256 (1998).Google Scholar
5. Raviprasad, K., Runakoshi, M. and Umemoto, M., J. Appl. Phys. 83, 921 (1998).Google Scholar
6. Fargan, A. J., Viret, M. and Coey, J. M. D., J. Phys: Cond. Matter. 7, 8953 (1998).Google Scholar
7. Geoghegan, D. S., McCormick, P. G. and Street, R., Mat. Sci. Forum 179–181, 629 (1995).Google Scholar
8. Meiklejohn, W. H. and Bean, C. P., Phys. Rev. 102, 1413 (1956); 105, 904 (1957).Google Scholar
9.For a review, see Nogués, J. and Schuller, Ivan K., J. Magn. Magn. Mater. 192, 203 (1999).Google Scholar
10. Edelstein, A. S., Kodama, R. H., Miller, M., Browning, V., Lubitz, P., Cheng, S. F. and Sieber, H., Appl. Phys. Lett. 74, 3872 (1999); Y. J. Tsang, B. Roos, T. Mewes, S. O. Demokritov, B. Hillebrands and Y. J. Wang, Appl. Phys. Lett. 75, 707 (1999).Google Scholar
11. Sort, J., Nogués, J., Amils, X., Suriñach, S., Muñoz, J. S. and Baró, M. D., Mater. Sci. Forum (2000) in press.Google Scholar
12. Huang, J. Y., Wu, Y. K. and Ye, H. Q., Appl. Phys. Lett. 66, 308 (1995); F. Cardellini and G. Mazzone, Philos. Mag. A 67, 1289 (1993).Google Scholar
13. Sort, J., Nogués, J., Amils, X., Surifiach, S., Muftoz, J. S. and Baró, M. D., Appl. Phys. Lett. 75, 3177 (1999).Google Scholar
14. Sato, H., Kitakami, O., Sakurai, T., Shimada, Y., Otani, Y. and Fukamichi, K., J. Appl. Phys. 81, 1858 (1997).Google Scholar
15. Soeya, S., Imagawa, T., Mitsuoka, K. and Narishige, S., J. Appl. Phys. 76, 5356 (1994); C. Tsang and Kenneth Lee, J. Appl. Phys. 53, 2605 (1982).Google Scholar