Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T23:08:08.583Z Has data issue: false hasContentIssue false

Materials Synthesis

Published online by Cambridge University Press:  25 February 2011

Peter R. Strutt
Affiliation:
The University of Connecticut, Institute of Materials Science, Storrs, CT 06268
Julian P. Partridge
Affiliation:
The University of Connecticut, Institute of Materials Science, Storrs, CT 06268
Get access

Abstract

Interesting possibilities exist for the scientific design of materials with optimized properties for a diversity of technological applications. For example, the reduction of severe wear and erosion in critical turbine and engine components requires basic studies of intrinsic strengthening, where loads are uniformly transferred across interphase inter-faces. The acheivement of this requires a developed capability for producing selected morphologies on the (i) macro, (ii) micro, and (iii) nanoscale. This involves using a combination of techniques that include the deposition of one, or more, atomic or molecular species in gaseous environments. Recent discoveries suggest, in fact, that it is feasible to design layers where the chemistry and structure at any depth can be pre-selected. Such a capability offers exciting opportunities for forming ‘graded property’ materials, as required in mechanical component and fiber-optic applications. Here, specific radial distributions of chemical species can be used to achieve optimal properties. Another in-triguing possibility is the formation of composite-structure materials, even on the nanoscale, by simultaneous growth of filaments and matrix, using appropriate precur-sors. Thus, metal and polymer matrices may, in principle, be strengthened by various types of fiber and particle distributions. In this approach the basic concept is the syn-thesis of scientifically designed materials for specific technological applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chu, C.W., Hor, P.H., Meng, R.L., Gao, L., and Huang, Z.J.. Science, 235, 567 (1987).Google Scholar
2. Gleiter, H.. Mat. Res. Soc. Symp. “Nanoscale Composites”, Boston, Nov. 1986.Google Scholar
3. Nicolis, G. and Prigogine, I.. “Self-Organization in Non-Equilibrium Systems”, Wiley, New York (1977).Google Scholar
4. Epstein, I.R.. J. Phys. Chem., 8, 187 (1984).Google Scholar
5. Winfree, A.T.. Science, 181, 937 (1973).Google Scholar
6. Takahashi, H., Sugimoto, I., Sato, T., and Yoshida, S.. SPIE. 320, 88 (1982).Google Scholar
7. Ehrlich, D.J. and Tsao, J.Y.. J. Vac. Sci. Technol. B1(4), 969 (1983).Google Scholar
8. Chuang, T.J.. J. Vac. Sci. Technol. 21 798 (1982).Google Scholar
9. Kay, E. and Dilks, A.. J. Vac. Sci. Technol. 16(2) (1979).Google Scholar
10. West, G.A., Gupta, A., and Beeson, K.W.. Appl. Phys. Lett. 47, 476 (1983).Google Scholar
11. Niihira, K. and Hirai, T.. J. Mater. Sci. 11, 4, 593 (1976).Google Scholar
12. Beatty, C.L. in “Ultrastructure Processing of Advanced Structural and Electronic Materials”. Ed: Hench, L.L.. Noyes Data. 256 (1984).Google Scholar
13. Narula, C.K., Paine, R.T., and Schaeffer, R.. Mat. Res. Soc. Symp. Proc. 73, 383 (1986).Google Scholar
14. Strutt, P.R.. Proc. Conf. “Laser versus the Electron Beam”. Publ: Bakish Mat., Englewood, NJ. 334 (1986).Google Scholar
15. Xiao, T.. M.S. Thesis, University of Connecticut. (1987).Google Scholar
16. Partridge, J.P., Pellegrino, J., Murphy, C., and Strutt, P.R.. Mat. Res. Soc. Symp. Proc. 74(1987).Google Scholar
17. Partridge, J.P. and Strutt, P.R.. Mat. Res. Soc. Symp. Proc. 75 (1987).Google Scholar
18. Chan, S., Dijkkamp, D., Wu, X.D., Venkatesan, T., and Chang, C.C.. Mat. Res. Soc. Symp. Proc. 74 (1987).Google Scholar
19. Matsumato, J., Sato, Y., Tsutsumi, M., and Setaka, N.. J. Mater. Sci. 17, 3106 (1982).Google Scholar
20. Eversole, W.G.. U.S. Patents, issued April 17th, 1982, 3,030,187, and 3,030,188.Google Scholar
21. Deryagin, B.V., Spitsyn, B.V., and Builov, L.L.. Sov. Phys. Doklady. 21, 694 (1976).Google Scholar
22 Sawabe, A. and Inuzuko, T.. Appl. Phys. Lett. 46(2), 146 (1985).Google Scholar
23. Kitsuki, K., Hiata, K., Nakamatsu, H., and Kawai, S.. Appl. Phys. Lett. 49(11), 634 (1986).Google Scholar
24. Hirai, T. and Hayashi, S.. J. Mater. Sci. 17, 1320 (1982).Google Scholar
25. Gallois, B.. Mat. Res. Soc. Symp. “Nanoscale Composites”. Boston, Nov. 1986.Google Scholar
26. Schwartz, R.B. and Johnson, W.L.. Phys. Rev. Lett. 51, 415 (1983).Google Scholar
27. Belousov, B.P.. Ref. Radiats. Med. Medzig. Moscow.145 (1959).Google Scholar
28. Zhabotinskii, A.M.. Dokl. Akad. Nauk. SSR. 157, 392 (1964).Google Scholar
29. Lotka, A.J.. J. Amer. Chem. Soc. 42, 1595 (1920).Google Scholar