Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-08T02:33:39.751Z Has data issue: false hasContentIssue false

Measurement Of Precipitate Nucleation Times In Molten Metals By Pulsed Surface Melting*

Published online by Cambridge University Press:  21 February 2011

D.M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
S.T. Picraux
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
P.S. Peercy
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J.A. Knapp
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
W.R. Wampler
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

The short melt duration resulting from pulsed laser and electron beam surface melting of ion-implanted metals has been used to measure precipitate nucleation times of compounds within the melt. We have examined the phases present in several alloy systems with TEM and used calculated thermal histories to place limits on the time required for nucleation of the following compounds: AlSb (5–25 ns), Al3Ni (≳ 750 ns)Al3Ni2 (≳ 950 ns) and AlNi (< 1000 ns), all in molten Al, and TiC (≲ 100 ns) in molten Fe. The compounds observed after our rapid solidification have relatively simple, cubic structures and melt congruently, while those predicted but not observed have more complex structures and decompose peritectically.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work performed at Sandia National Laboratories supported by the U.S. Department of Energy under contract #DE-AC04-76DP00789.

References

REFERENCES

1. Wampler, W. R., Follstaedt, D. M. and Peercy, P. S., Mat. Res. Soc. Symp. Proc. 1, 567574 (1981).10.1557/PROC-1-567Google Scholar
2. Wampler, W. R., Follstaedt, D. M. and Picraux, S. T., Appl. Phys. Lett. 36, 366 (1980).10.1063/1.91489Google Scholar
3. Picraux, S. T., Follstaedt, D. M., Knapp, J. A., Wampler, W. R. and Rimini, E., Mat. Res. Soc. Symp. Proc. 1, 575582 (1981).10.1557/PROC-1-575Google Scholar
4. Galvin, G. J., Thompson, M. O., Mayer, J. W., Peercy, P. S., Hammond, R. B. and Paulter, N., Phys. Rev. B 27, 1079 (1983).10.1103/PhysRevB.27.1079Google Scholar
5. Galvin, G. J. and Peercy, P. S., to be published.Google Scholar
6. McNabb, A. and Foster, P. K., Trans. AIME 227, 618 (1963).Google Scholar
7. Hansen, M., Constitution of Binary Alloys, (McGraw-Hill, NY, 1958), p. 130 (Al-Sb) and p. 118 (Al-Ni).Google Scholar
8. Peercy, P. S., Follstaedt, D. M., Picraux, S. T. and Wampler, W. R., Mat. Res. Soc. Symp. Proc. 4, 401406 (1982).10.1557/PROC-4-401Google Scholar
9. Picraux, S. T. and Follstaedt, D. M., Mat. Res. Soc. Symp. Proc. 13, 751756 (1983).10.1557/PROC-13-751Google Scholar
10. Follstaedt, D. M., Knapp, J. A. and Peercy, P. S., Proc. Fifth Intl. Conf. on Liquid and Amorphous Metals 1983, in press.Google Scholar
11. Molchanova, E. K. and Glazunov, S. G., Phase Diagrams of Titanium Alloys (Israeli Program for Scientific Translations, 1965), p. 278.Google Scholar
12. Lin, C.-J., Spaepen, F. and Turnbull, D., Proc. Fifth Int'l. Conf. on Liquid and Amorphous Metals, 1983, in press; also Appl. Phys. Lett. 41, 721 (1982).10.1063/1.93647Google Scholar
13. Hung, L. S., Nastasi, M., Gyulai, J. and Mayer, J. W., Appl. Phys. Lett. 42, 672 (1983).10.1063/1.94068Google Scholar
14. Brimhall, J. L., Kissinger, H. E. and Charlot, L. A., Rad. Eff. 77, 273 (1983).10.1080/00337578308228192Google Scholar