Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-11T06:05:08.928Z Has data issue: false hasContentIssue false

Measurements of to Temperatures of Supersaturated Si-As Alloys

Published online by Cambridge University Press:  26 February 2011

Kwang-Ryeol Lee
Affiliation:
Harvard University, Division of Applied Sciences, Cambridge, MA 02138
Jeffrey A. West
Affiliation:
Harvard University, Division of Applied Sciences, Cambridge, MA 02138
Patrick M. Smith
Affiliation:
Harvard University, Division of Applied Sciences, Cambridge, MA 02138
M. J. Aziz
Affiliation:
Harvard University, Division of Applied Sciences, Cambridge, MA 02138
J. A. Knapp
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87158
Get access

Abstract

The congruent melting point, or To curve, of crystalline Si-As alloys has been measured in the range of 1.6 to 18.1 at. % arsenic by line source electron beam annealing. Alloys were created by ion implantation of As into 0.1mm Si-on-sapphire and crystallized by pulsed laser melting. To temperatures decrease from 1673±10K at 2.0 at.% As to 1516±30K at 18.1 at.% As. The results of these measurements are significantly higher than the previous results of studies using pulsed laser melting techniques. Advantages of the e-beam technique over previous techniques are discussed. Chemical free energy functions of the solid and liquid phases were calculated from existing thermodynamic data. The calculated To curve agrees with the measured values only in low concentration region (less than 8 at.%).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aziz, M.J. and Kaplan, T., Acta Metall. 36, 2335 (1988).CrossRefGoogle Scholar
2. Trumbore, F.A., Bell Sys. Tech. J. 1960 (1), 205.Google Scholar
3. White, C.W., Wilson, S.R., Appleton, B.R. and Young, F.W. Jr., J. Appl. Phys. 51, 738 (1980).Google Scholar
4. Olesinski, R.W. and Abbaschlan, G.J., Bull. Alloy Phase Diagrams 8 (3), 254 (1985).Google Scholar
5. Fair, R.B. and Weber, G.R., J. Appl. Phys. 44, 273 (1973).CrossRefGoogle Scholar
6. Lietoila, A., Gibbons, J.F., Magee, T.J., Peng, J. and Hong, J. D., Appl. Phys. Lett. 35, 532 (1979).Google Scholar
7. Miyamoto, N., Kuroda, E. and Yoshida, S., J. Jpn. Soc. Appl. Phys., Suppl. 43, 408 (1974).Google Scholar
8. Baeri, P., Reitano, R., Malvezzi, A.M. and Borghesi, A., J.Appl. Phys. 67 (4), 1801 (1990).Google Scholar
9. Peercy, P.S., Thompson, M.O., and Tsao, J.Y., Appl. Phys. Lett. 47 (3), 244 (1985).Google Scholar
10. Knapp, J.A., J. Appl. Phys. 58 (7), 2584 (1985).Google Scholar
11. Knapp, J.A. and Follstaedt, D.M., Phys. Rev. Lett. 58(23), 2454 (1987).Google Scholar
12. Follstaedt, D.M. and Knapp, J.A., Mater. Res. Soc. Proc. 100, 597 (1988).Google Scholar
13. Narayan, J., White, C.W., Aziz, M.J., Stritzker, B. and Walthuis, A., J. Appl. Phys. 57 (2), 564 (1985).CrossRefGoogle Scholar
14. Thermodynamic Properties of Inorganic Substances, edited by Barin, I. and Kancke, O. (Springer-Verlag, New York, 1973) p. 674.Google Scholar
15. Sandhu, J.S. and Reuter, J.L., IBM J. Res. Develop. 16 (11), 464 (1971).Google Scholar
16. Belousov, V.I., Russian J. of Physical Chemistry, 53 (9), 1266 (1979).Google Scholar
17. Klemm, W. and Pirscher, P., Z. Anorg. Chem. 247, 211 (1941)Google Scholar