Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-08T10:11:28.546Z Has data issue: false hasContentIssue false

Mechanical Hardness as a Probe of Nanocrystalline Materials

Published online by Cambridge University Press:  15 February 2011

C. C. Koch
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695-7907
T. D. Shen
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695-7907
T. Malow
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695-7907
O. Spaldon
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695-7907
Get access

Abstract

The use of mechanical hardness as a probe of nanocrystalline materials is reviewed. The fact that the grain size dependence of hardness is very different for nanocrystalline materials compared to conventional (≥1 μm diameter) polycrystals suggests a different deformation mechanism may be operative in nanocrystalline materials. Hardness is useful for following the sintering, densification reactions of nanoparticles. Solid solution hardening in nanocrystalline alloys is found to be overwhelmed by the grain boundary hardening. If alloying decreases the grain boundary hardening, i.e. increases grain size, an apparent solid solution softening effect is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gilman, J. J., ”Hardness — A Strength Microprobe”, in “The Science of Hardness Testing and Its Research Applications”, ed. Westbrook, J. H. and Conrad, H., American Society for Metals, Metals Park, Ohio (1973) pp. 5174.Google Scholar
2. Hall, E.O., Proc. Phys. Soc. (London) B64, 747 (1951); N. J. Petch, J. Iron + Steel Inst., 174, 25 (1953).Google Scholar
3. Jang, J. S. C. and Koch, C. C., Scripta Metall. Mater. 2A, 1599 (1990).Google Scholar
4. Hughes, G. D., Smith, S. D., Pande, C. S., Johnson, H. R., and Armstrong, R. W., Scripta Metall 20, 93 (1986).Google Scholar
5. Suryanaraayana, C., Mukhopadhyay, D., Patankar, S. N., and Froes, F. H., J. Mater. Res. 7 2114(1992).Google Scholar
6. Fougere, G. E., Weertman, J. R., Siegel, R. W., and Kim, S., Scripta Metall. Mater. 20, 1879 (1992).Google Scholar
7. Valiev, R. Z., Chmelik, F., Bordeaux, F., Kapelski, G., and Baudelet, B., Scripta Metall. Mater. 27, 855 (1992).Google Scholar
8. Palumbo, G., Erb, U., and Aust, K. T., Scripta Metall. Mater., 24, 2347 (1990).Google Scholar
9. Lu, K., Wei, W. D., and Wang, J. T., Scripta Metall. Mater. ,24, 2319 (1990).Google Scholar
10. Liu, X. D., Wang, J. T., and Ding, B. Z., Scripta Metall. Mater. 28, 59 (1993).Google Scholar
11. Scattergood, R.O. and Koch, C. C., Scripta Metall. Mater. 27, 1195 (1992).Google Scholar
12. Thomas, G. J., Siegel, R. W., and Eastman, J. A., Scripta Metall. Mater. 24,201 (1990).Google Scholar
13. Gertsman, V. Y., Hoffmann, M., Gleiter, H., and Birringer, R., Acta MetaUl. Mater. 42, 3539 (1994).Google Scholar
14. Günther, B., Kumpmann, A., and Kunze, H.-D., Scripta Metall. Mater. 27, 833 (1992).Google Scholar
15. Jang, J. S. C. and Koch, C. C., J. Mater. Res. 5, 498 (1990).Google Scholar
16. Stoloff, N. S. and Davies, R. G., Prog. Mater. Sci. 13, 3 (1966).Google Scholar
17. Jang, J. S. C. and Tsau, C. H., J. Mater. Sci., 28 982 (1993).Google Scholar
18. Horvath, J., Defect and Diffusion Forum 66–69, 207 (1989).Google Scholar
19. Siegel, R. W., Ramsamy, S., Hahn, H., Li, Z., Lu, T., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).Google Scholar
20. Shen, T. D. and Koch, C. C., in “Int'l Sym. Mech. Alloying, Nanocrystalline, and Amorphous Materials”, Grenoble, France, June 27-July 1, 1994, to be published in the Proceedings.Google Scholar
21. Eckert, J., Holzer, J. C., Krill, C. E., m, and L.Johnson, W., J. Mater. Res. 7, 1751 (1992).Google Scholar
22. Massalski, T. B., in “Physical Metallurgy” ed. Cahn, R. W. and Haasen, P., Elsevier Science Publishers, B. V., Amsterdam (1983) p. 204.Google Scholar
23. Jackson, P. J., Prog. Mater. Sci. 29, 139 (1985).Google Scholar
24. Nakajima, K. and Namakura, K., Phil. Mag. 12, 361 (1965)Google Scholar
25. Gallagher, P. C. J., Metall. Trans. 1, 2429 (1970).Google Scholar
26. Hu, G. X. and Qian, M. G., Physical Metallurgy, Shanghai Science and Technology Publisher, Shanghai (1983) p. 298.Google Scholar
27. Shen, T. D. and Koch, C. C., ”Formation, Solid Solution Hardening and Softening of Nanocrystalline Solid Solutions Prepared by Mechanical Attrition” submitted for publication 1994.Google Scholar
28. Pink, E. and Arsenault, R. J., Prog. Mater. Sci. 24, 1 (1979).Google Scholar
29. Gryaznov, V. G. and Trusov, L. I., Prog. Mater. Sci. 37, 289 (1993).Google Scholar
30. Valiev, R. Z., Kozlov, E. V., Ivanov, Yu.F., Lian, J., Nazaarov, A. A., and Baudelet, B., Acta Metall. Mater. 42, 2467 (1994).Google Scholar
31. Lasalmonie, A. and Strudel, J. L., J. Mater. Sci. 21, 1837, (1986).Google Scholar
32. Smithells, C. J., ”Smithell's Metals Reference Book”, 6th ed., edited by Brandes, E. A. (Butterworths, London, 1983), p. 15–1Google Scholar
33. Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).Google Scholar