Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-16T23:34:44.566Z Has data issue: false hasContentIssue false

The Mechanism for Ultrananocrystalline Diamond Growth: Experimental and Theoretical Studies

Published online by Cambridge University Press:  01 February 2011

Paul William May
Affiliation:
paul.may@bris.ac.uk, University of Bristol, School of Chemistry, Cantock's Close, BRISTOL, BS8 1TS, United Kingdom, +44 (0)117 9289927, +44 (0)117 9251295
Yuri A. Mankelevich
Affiliation:
ymankelevich@mics.msu.su, Moscow State University, Nuclear Physics Institute, Moscow, 119992, Russian Federation
Get access

Abstract

Ar/CH4/H2 gas mixtures have been used to deposit microcrystalline diamond, nanocrystalline diamond and ultrananocrystalline diamond films using hot filament chemical vapor deposition. A 3-dimensional computer model was used to calculate the gas phase composition for the experimental conditions at all positions within the reactor. Using the experimental and calculated data, we show that the observed film morphology, growth rate, and across-sample uniformity can be rationalized using a model based on competition between H atoms, CH3 radicals and other C1 radical species reacting with dangling bonds on the surface. Proposed formulae for growth rate and average crystal size are tested on both our own and published experimental data for Ar/CH4/H2 and conventional 1%CH4/H2 mixtures, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Gruen, D. M., Shenderova, O. A., Vul', A. Ya. (Eds.), Synthesis, Properties and Applications of Ultrananocrystalline Diamond, Springer, 2005 (NATO Science Series part II, vol.192).10.1007/1-4020-3322-2Google Scholar
2 Xiao, X., Birrell, J., Gerbi, J. E., Auciello, O. and Carlisle, J. A., J. Appl. Phys., 9, 2232 (2004).10.1063/1.1769609Google Scholar
3 Williams, O. A., Daenen, M., D'Haen, J., Haenen, K., Maes, J., Moshchalkov, V. V., Nesládek, M., Gruen, D. M., Diamond Relat. Mater., 15, 54 (2004).Google Scholar
4 May, P. W., Smith, J. A., Mankelevich, Yu. A., Diamond Relat. Mater., 15, 345 (2006).10.1016/j.diamond.2005.06.044Google Scholar
5 Zhou, D., McCauley, T. G., Qin, L. C., Krauss, A. R. and Gruen, D. M., J. Appl. Phys., 83, 540 (1998).Google Scholar
6 May, P. W., Harvey, J. N., Smith, J. A., Mankelevich, Yu. A., J. Appl. Phys., (2006), 99, 104907.10.1063/1.2195347Google Scholar
7 May, P. W., Mankelevich, Yu. A., J. Appl. Phys., (2006), 100 (2006) 024301.Google Scholar
8 Rabeau, J. R., John, P., Wilson, J. I. B. and Fan, Y., J. Appl. Phys., 96, 6724 (2004).10.1063/1.1810637Google Scholar
9 Skokov, S., Weiner, B., Frenklach, M., J. Phys. Chem., 98, 7073 (1994).Google Scholar
10 May, P.W., Mankelevich, Yu. A., J. Appl. Phys. (2007) in press.Google Scholar
11 Mankelevich, Y. A., Rakhimov, A. T. and Suetin, N. V., Diamond Relat. Mater., 7, 1133 (1998).10.1016/S0925-9635(98)00163-0Google Scholar
12 Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C. Jr, Lissianski, V. V., and Qin, Z., http://www.me.berkeley.edu/gri–mech/Google Scholar
13 Mankelevich, Y. A., Suetin, N. V., Ashfold, M. N. R., Smith, J. A. and Cameron, E., Diamond Relat. Mater., 10, 364 (2001).Google Scholar
14 Ashfold, M. N. R., May, P. W., Petherbridge, J. R., Rosser, K. N., Smith, J. A., Mankelevich, Y. A. and Suetin, N. V., Phys. Chem. Chem. Phys., 3, 3471 (2001).Google Scholar
15. Smith, J. A., Wills, J. B., Moores, H. S., Orr-Ewing, A. J., Mankelevich, Yu. A. and Suetin, N. V., J. Appl. Phys., 92, 672 (2002).Google Scholar
16 Ferrari, A. C. and Robertson, J., Phys. Rev. B, 63, 121405 (2001).Google Scholar
17 Mankelevich, Y. A., Suetin, N. V., Ashfold, M. N. R., Boxford, W. E., Orr-Ewing, A. J., Smith, J. A. and Wills, J. B., Diamond Relat. Mater., 12, 383 (2003).10.1016/S0925-9635(02)00272-8Google Scholar
18 Liu, Y. K., Tzeng, Y., Liu, C., Tso, P., Lin, I. N., Diamond Relat. Mater., 13, 1859 (2004).Google Scholar