Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-01T17:15:20.239Z Has data issue: false hasContentIssue false

Mechanism of Enhanced Diffusion of Aluminum in 6H-SiC in the Process of High-Temperature Ion Implantation

Published online by Cambridge University Press:  10 February 2011

Igor O. Usov
Affiliation:
Ioffe Physical Technical Institute RAS, St. Petersburg, 194021, Russia
A. A. Suvorova
Affiliation:
Ioffe Physical Technical Institute RAS, St. Petersburg, 194021, Russia
V. V. Sokolov
Affiliation:
Ioffe Physical Technical Institute RAS, St. Petersburg, 194021, Russia
Y. A. Kudryavtsev
Affiliation:
Ioffe Physical Technical Institute RAS, St. Petersburg, 194021, Russia
A. V. Suvorov
Affiliation:
Cree Research Inc., Durham, NC 27713, USA
Get access

Abstract

The diffusion of Al in 6H-SiC during high-temperature ion implantation was studied using secondary ion mass spectrometry. A 6H-SiC wafer was implanted with 50 keV Al ions to a dose of 1.4E16 cm−2 in the high temperature range 1300°–1800TC and at room temperature. There are two diffusion regions that can be identified in the Al profiles. At high Al concentrations the gettering related peak and profile broadening are observed. At low Al concentrations, the profiles have a sharp kink and deep penetrating diffusion tails. In the first region, the diffusion coefficient is temperature independent, while in the second it exponentially increases as a function of temperature. The Al redistribution can be explained with the substitutional-interstitial diffusion mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, Z., Du, H., Libera, M. and Singer, I.L., J. Mater.Res., 10(6), 1441(1995).Google Scholar
2. Rao, M.V., Griffiths, P., Holland, O. W., Kelner, G., Freitas, J.A., Simons, D.S., Chi, P.H. and Chezzo, M., J. Appl. Phys., 77(6), 2479(1995).Google Scholar
3. Tajima, Y., Kijima, K. and Kingery, W.D., J.Chem.Phys., 77(5), 2592(1982).Google Scholar
4. Lucke, W., Comas, J., Hubler, G. and Dunning, K., J.Appl.Phys., 46(3), 994(1975).Google Scholar
5. Suvorov, A.V., Usov, I.O., Sokolov, V.V. and Suvorova, A.A. in Ion-Solid Interaction for Materials Modification and Processing, edited by Poker, D.B., Ila, D., Cheng, Y-S., Harriot, L.R. and Sigmon, T.W.,(Mater. Res. Soc. Symp. Proc. 396, Pittsburgh, PA 1996), p. 239242.Google Scholar
6. Suvorova, A.A., Lebedev, O.I., Suvorov, A.V. and Usov, I.O., Proceedings of the 10th International Conference Microscopy of Semiconducting Materials, Oxford, UK, 1997, (Inst. of Physics Conference Ser. No. 157, Bristol & Philadelphia, UK, 1997), p.531, and A.V. Suvorov, I.O. Lebedev, A.A. Suvorova, J. Van Landuyt, I.O. Usov, Nucl. Instr. Meth. B, 127/128, 347 (1997), and O.I. Lebedev, G.Van Tendeloo, A.A. Suvorova, I.O. Usov, A.V. Suvorov, Journal of Electron Microscopy 46(4), 271 (1997).Google Scholar
7. Myers, S.M. in Ion Implantation, edited by Hirvonen, J.K. (Treatise on Materials Science and Technology Vol.18, Academic Press, 1980), p. 48.Google Scholar
8. Shaw, D. in Atomic diffusion in semiconductors, edited by Shaw, D. (Plenum Press, London and New York, 1973), p. 19.Google Scholar
9. Frank, F.C. and Turnbull, D., Phys.Rev. 104(3), 617 (1956).Google Scholar
10. Gösele, U., Frank, W. and Seeger, A., Appl. Phys. 23(4), 361 (1980).Google Scholar