Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-15T02:54:16.986Z Has data issue: false hasContentIssue false

Metal-Organic Chemical Vapor Deposition of Aluminum from Trialkylamine Alanes

Published online by Cambridge University Press:  25 February 2011

M.E. Gross
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
L.H. Dubois
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
R.G. Nuzzo
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
K.P. Cheung
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
Get access

Abstract

Trialkylamine alanes are attractive precursors for the metal-organic chemical vapor deposition (MOCVD) of aluminum thin films in microelectronics applications. The weak Al-N interaction and the absence of Al-C bonds (which decompose by highly activated processes) make these compounds excellent alternatives to the most widely studied Al CVD precursor, triisobutyl aluminum (TIBA). Solid trimethylamine alane (TMAA) and liquid triethylamine alane (TEAA) have vapor pressures at room temperature of 1 and 0.5 torr, respectively. In addition, these compounds are stable, non-pyrophoric, and are easily prepared. We report parallel studies of Al CVD in a low pressure, cold wall reactor and in an ultrahigh vacuum chamber to understand both the surface chemistry and the growth morphology. These studies, in turn, are compared with the decomposition chemistry and MOCVD characteristics of TIBA.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Workshop on Tungsten and Other Advanced Metals for ULSI Applications VII, Dallas, TX, Oct. 22-24, 1990.Google Scholar
[2] Levy, R.A., Green, M.L., and Gallagher, P.K., J. Electrochem. Soc. 131, 2175–82 (1984); M.L. Green, R.A. Levy, R.G. Nuzzo, and E. Coleman, Thin Solid Films 114, 367 (1984).Google Scholar
[3] Amazawa, T., Nakamura, H., and Arita, Y., Proc. Intl. Elec. Dev. Mat. Conf. 442 (1988, Santa Clara, CA).Google Scholar
[4] Sekiguchi, A, Kobayashi, T., Hosokawa, N., and Asamaki, T., Jap. J. Appl. Phys. 27 L2134 (1988).Google Scholar
[5] Bent, B.E., Nuzzo, R.G., and Dubois, L.H., J. Amer. Chem. Soc. 111, 1634 (1989); B.E. Bent, L.H. Dubois, and R.G. Nuzzo, Mat. Res. Soc. Symp. Proc. 131, 327 (1989).Google Scholar
[6] Cheung, K.P., Case, C.J., Liu, R., Schutz, R.J., Wagner, R.S., Kwakman, L.F.Tz., Huibregtse, D., Piekaar, H.W., and Granneman, E.H.A., Proc. 7th Intl. IEEE VLSI Multilevel Interconnect Conference (1990), in press; L.F.Tz. Kwakman, D. Huibregtse, H.W. Piekaar, E.H.A. Granneman, K.P. Cheung, C.J. Case, R. Liu, R.J. Schutz, and R.S. Wagner, ibid.Google Scholar
[7] Ruff, J.K. and Hawthorne, F., J. Amer. Chem. Soc. 82, 2143 (1960).Google Scholar
[8] Carley, D.R., and Dunn, J.H., U.S. Patent 3,375,129 (May 26, 1968).Google Scholar
[9] Whaley, T.P. and Norman, V., U.A. Patent 3,206,326 (Sept. 14, 1965).Google Scholar
[10] Gladfelter, W.L., Boyd, D.C., and Jensen, K.F., Chem. Materials 1, 339 (1989).Google Scholar
[11] Beach, D.B., Blum, S.E., and LeGoues, F.K., J. Vac. Sci. Technol. A. A27, 3117 (1989).Google Scholar
[12] Wee, A.T.S., Murrell, A.J., Singh, N.K., O'Hare, D., and Foord, J.S., J. Chem. Soc. Chem. Comm., 11 (1990).Google Scholar
[13] Gross, M.E., Cheung, K.P., Fleming, C.G., Kovalchick, J., and Heimbrook, L.A., J. Vac. Sci. Technol., in press.Google Scholar
[14] Gross, M.E., Fleming, C.G., Cheung, K.P., and Heimbrook, L.A., Appl. Phys. Lett., in press.Google Scholar
[15] Dubois, L.H., Zegarski, B.R., Kao, C.-T., and Nuzzo, R.G., Surface Sci. 236, 77 (1989).Google Scholar
[16] Dubois, L.H., Zegarski, B.R., Gross, M.E., and Nuzzo, R.G., Surface Sci., in press.Google Scholar
[17] Baum, T.H., Larson, C.E., and Jackson, R.L., Appl. Phys. Lett. 55, 1264 (1989).Google Scholar
[18] Gross, M.E., Harriott, L.R., and Opila, R.L. Jr., J. Appl. Phys. 68, 4820 (1990).Google Scholar
[19] Vaidya, S. and Sinha, A.K., Thin Solid Films 75, 253 (1981).Google Scholar
[20] Nechiporenko, G.N., Petukhova, L.B., and Rozenberg, A.S., Izv. Akad. Nauk SSSR, Ser. Khim. 8, 1697 (1975).Google Scholar
[21] Hendrickson, C.H., Duffy, D., and Eyman, D.P., Inorg. Chem. 7, 1047 (1968).Google Scholar
[22] Piekaar, H.W., Kwakman, L.F.Tz., and Granneman, E.H.A., Proc. 6th Intl. IEEE VLSI Multilevel Interconnect Conf., p. 122 (1989).Google Scholar