Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T14:45:55.476Z Has data issue: false hasContentIssue false

Metastable Phase Formation and Stimulated Transitions in Metallic Nanometer Films

Published online by Cambridge University Press:  01 February 2011

Dirk C. Meyer
Affiliation:
Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden, Germany
Alexandr A. Levin
Affiliation:
Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden, Germany
Stefan Braun
Affiliation:
Fraunhofer-Institut Werkstoff-und Strahltechnik Dresden, D-01277 Dresden, Germany
Andre Gorbunov
Affiliation:
Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01062 Dresden, Germany
Michael Mertig
Affiliation:
Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01062 Dresden, Germany
Wolfgang Pompe
Affiliation:
Institut für Werkstoffwissenschaft, Technische Universität Dresden, D-01062 Dresden, Germany
Peter Paufler
Affiliation:
Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden, Germany
Get access

Abstract

Due to the non-equilibrium nature of deposition techniques, thin films can exhibit an energetic state far from thermodynamic equilibrium. Energy supply can stimulate a transition into other metastable states. Examples of metastable phase formation presented in this work are thermally stimulated solid state reactions in metallic nanometer Al/Co/Ni multilayers and phase formation and transition in metallic alloy films of the elemental materials system Fe-Cr. An interesting application illustrates the technical potential of metastable nanometer films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cheetham, A.K., Day, P., Solid State Chemistry. Clarendon Press, Oxford 1992 Google Scholar
2. Li, G.H., Zhang, D.L., Jiang, H.W., Lai, W.Y., Liu, W., Wang, Y.P., Appl. Phys. Lett. 71, 879 (1997).Google Scholar
3. Braun, S., Meyer, D. C., Paufler, P., Grushko, B., J. Alloys Compd. 287, 1217 (1999).Google Scholar
4. Levin, A.A., Meyer, D.C., Tselev, A., Gorbunov, A., Pompe, W., Paufler, P., J. Alloys Compd. 334, 159166 (2002).Google Scholar
5. Levin, A.A., Meyer, D.C., Gorbunov, A., Mensch, A., Pompe, W., Paufler, P., J. Alloys Compd. 360, 107117 (2003).Google Scholar
6. Ritsch, S., Beeli, C., Nissen, H.-U., Gödecke, T., Scheffer, M., Lück, R., Phil. Mag. Lett. 78, 6775 (1998).Google Scholar
7. Meyer, D.C., Richter, K. and Paufler, P., Gawlitza, P., Holz, Th., J. Appl. Phys. 87, 72187226 (2000).Google Scholar
8. Gorbunov, A., Levin, A.A., Wieser, E., Bischoff, L., Eckert, D., Mensch, A., Mertig, M., Meyer, D.C., Reuther, H., Paufler, P., Pompe, W., Proc. SPIE 5121, 306316 (2002).Google Scholar
9. Wieser, E., Reuther, H., Prokert, F., Gorbunov, A., Tselev, A., Pompe, W., Levin, A.A., Meyer, D.C., Paufler, P., J. Appl. Phys. 92, 572577 (2002).Google Scholar