Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-16T22:34:08.461Z Has data issue: false hasContentIssue false

Microstructure of Gold Films Grown by Ion Induced Deposition

Published online by Cambridge University Press:  26 February 2011

J.S. Ro
Affiliation:
Materials Science & Engineering, M.I.T., 77 Massachusetts Avenue, Cambridge, MA 02139
A.D. Dubner
Affiliation:
Materials Science & Engineering, M.I.T., 77 Massachusetts Avenue, Cambridge, MA 02139
C.V. Thompson
Affiliation:
Materials Science & Engineering, M.I.T., 77 Massachusetts Avenue, Cambridge, MA 02139
J. Melngailis
Affiliation:
Research Laboratory of Electronics, M.I.T., Cambridge, MA 02139
Get access

Abstract

A beam of ions incident on a substrate can cause adsorbed gas molecules to break up, resulting in material deposition. We have previously demonstrated deposition of gold from a gas of dimethyl gold hexafluoro acetylacetonate (C7H7F6O2Au) using both focused and broad ion beams. Here we investigate growth at various substrate temperatures and examine micro-structure using transmission electron microscopy. Films grown at room temperature were discontinuous even up to the thickness of 250μπι while films grown at higher substrate temperatures were continuous even at lower thicknesses. Deposition carried out on substrates at 100°C and 160°C using 70 kev Ar+ ions resulted in resistivities approaching the bulk value and a deposition yield of 60 to 75 atoms/ion. The relationship between growth conditions, micro-structure and resistivity will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 See, for example, most of the articles In this volume ctr for a review Ehrlich, D.J. and Tsao, J.Y. J. Vac. Sci. Technol. B1, 969 (1983).Google Scholar
2 Matsui, S. and Mori, K. J. Vac. Sci. Technol. B4, 299 (1986)Google Scholar
3 Matsui, S. and Mori, K., Appl. Phys. Lett. 51, 647 (1987).Google Scholar
4 Jackman, R.B. and Foord, J.S. Appl. Phys. Lett. 49, 196 (1986)Google Scholar
5 Koops, H.W.P., Weiel, R., Kern, D.P., and Baum, T.H. to be published J. Vac. Science and Technol. (Proceedings of 31st Conf. on Electron Ion and Photon Beam, Woodland Hills, CA May 1987).Google Scholar
6 Kunz, R. R. and Mayer, , Appl. Phys. Lett. 50, 962 (1987).Google Scholar
7 Mayer, T.M., Kunz, R. R., and Allen, T.E. (this volume).Google Scholar
8 Gamo, K., Takakura, N., Samoto, N., Shimizu, R., and Namba, S. Japan J. Appl. Phys. 23 L293 (1984).Google Scholar
9 Gamo, K., Takakura, N., Takehara, D., and Namba, S. Extended Abstracts. 16th International Conference on Solid State Devices and Materials (Kobe, Japan 1984) p. 31.Google Scholar
10 Gamo, K. and Namba, S. in Proceedings of Svmp. on Reduced Temperature Processing for VLSI (Electrochem. Soc. Pennington, NJ 1986) Vol. 86-5.Google Scholar
11 Gamo, K., Takehara, D., Hamamura, Y., Tomita, M. and Namba, S., Microelectronic Engineering 5, 163 (1986).Google Scholar
12 Shedd, G.M., Dubner, A.D., Lezec, H. and Melngailis, J., Appl. Phys. Lett. 49, 1584 (1986).Google Scholar
13 Melngailis, J.M., Dubner, A.D., Ro, J.S., Shedd, G.M., Lezec, H. and Thompson, C.V., “Proceedings of the NATO Symposium on Emerging Technologies for In Situ Processing,” held in Cargese May 1987, V.T. Nguyen and D.J. Ehrlich editors (to be published by Martinus Nijhoff).Google Scholar
14 Dubner, A.D., Shedd, G.M., Lezec, H. and Melngailis, J., J. Vac. Sci. Technol. B5, 1434 (1987).Google Scholar
15 Cleaver, J.R.A., Ahmed, H., Heard, P. J., Prewett, P.D., Dunn, G.J., Kaufman, H., Microelectronic Engineering 3, 253 (1985)Google Scholar
16 Economou, N., Shaver, D., Ward, B., SPIE March 1987 Santa Clara (to be published).Google Scholar
17 Yamamoto, M., Sato, M., Kyogoko, H., Aita, K., Nakagawa, Y., Yasaka, A., Takasawa, R., Hattori, O., SPIE Vol. 632 (1986).Google Scholar
18 Miyauchi, E., and Hashimoto, H., J. Vac. Sci. Technol. A4, 933 (1986), E. Miyauchi and H. Hashimoto, Nuclear Instr. and Methods in Physics Research B21. 104 (1987).Google Scholar
19 For a recent view of focused ion beam applications and references, see Melngailis, J., J. Vac. Sci. Technol. B5, 469 (1987).Google Scholar
20 Baum, T.H., J. Electrochem. Soc. 134, 2616 (1987).Google Scholar
21 Baum, T.H. and Jones, C.R., J. Vac. Sci. Technol. B4, 1187 (1986).Google Scholar
22 Pashley, D.W., Stowell, M.J., Jacobs, M.H., and Law, T.J., Phil. Mag. 10, 127 (1964).Google Scholar