Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-04T18:45:39.941Z Has data issue: false hasContentIssue false

Mo and Co Silicide FEAs

Published online by Cambridge University Press:  14 March 2011

Jong Duk Lee
Affiliation:
Inter-University Semiconductor Research Center(ISRC) and School of Electrical Engineering, Seoul National University, San 56-1, Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea
Byung Chang Shim
Affiliation:
Inter-University Semiconductor Research Center(ISRC) and School of Electrical Engineering, Seoul National University, San 56-1, Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea
Sung Hun Jin
Affiliation:
Inter-University Semiconductor Research Center(ISRC) and School of Electrical Engineering, Seoul National University, San 56-1, Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea
Byung-Gook Park
Affiliation:
Inter-University Semiconductor Research Center(ISRC) and School of Electrical Engineering, Seoul National University, San 56-1, Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea
Get access

Abstract

For enhancement and stabilization of electron emission, Mo and Co silicides were formed from Mo mono-layer and Ti/Co bi-layers on single crystal silicon FEAs, respectively. Using the slope of Fowler-Nordheim curve and tip radius measured from SEM, the effective work function of Mo and Co silicide FEAs are calculated to be 3.13 eV and 2.56 eV, respectively. Compared with silicon field emitters, Mo and Co silicide exhibited 10 and 34 times higher maximum emission current, 10 V and 46 V higher failure voltage, and 6.1 and 4.8 times lower current fluctuation, respectively. Moreover, the emission currents of the silicide FEAs depending on vacuum level are almost same in the range of 10−9 ∼ 10−6 torr. This result shows that silicide is robust in terms of anode current degradation due to the absorption of air molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, J. D., Uh, H. S., Shim, B. C., Cho, E. S., Oh, C. W., and Kwon, S. J., Tech. Dig. of IVMC, 304 (1998).Google Scholar
2. Chi, E. J., Shim, J. Y. and Baik, H. K., Tech. Dig. of IVMC, 188 (1996).Google Scholar
3. Yoon, Y. J., Kim, G. B. and Baik, H. K., J. Vac. Sci. Technol. B 17, 627 (1999).Google Scholar
4. Park, J. S., Lee, S., Ju, B. K., Oh, M. H., Jang, J., and Jeon, D., Tech. Dig. of SID, 576 (1999).Google Scholar
5. Rakhshandehroo, M. R. and Pang, S. W., IEEE Trans. Electron Devices 46, 792 (1999).Google Scholar
6. Uh, H. S., Park, B. G., and Lee, J. D., IEEE Electron Device Letters 19, 167 (1998).Google Scholar
7. Wang, C-C., Ku, T-K., Hsieh, I-J., and Cheng, H-C., Jpn. J. Appl. Phys. 35, 3681 (1996).Google Scholar
8. King, R. A., Mackenzie, R. A. D., Smith, G.D.W., and Cade, N. A., J. Vac. Sci. Technol. B 13, 603 (1995).Google Scholar
9. Chung, I-J., Hariz, A., Haskard, M. R., Ju, B. K., and Oh, M. H., Tech. Dig. of IVMC, 245 (1996).Google Scholar
0. Takai, M., Iriguchi, T., and Morimoto, H., Hosono, A., and Kawabuchi, S., J. Vac. Sci. Technol. B 16, 790 (1998).Google Scholar
11. Uh, H. S., Park, B-G and Lee, J. D., Tech. Dig. of Int. Electron Devices Meeting, 713 (1997).Google Scholar
12. Sohn, D. K., Park, J-S and Park, J. W., J. Electrochemi. Soc. 147, 373 (1998).Google Scholar
13. Brodie, I. and Schwoebel, P. R., Proc. of the IEEE 82, 1006 (1994).Google Scholar
14. Gomer, R., Field Emission and Field Ionization. Cambridge, MA: Harvard Univ. Press, (1961).Google Scholar