Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-15T13:40:50.992Z Has data issue: false hasContentIssue false

MOCVD Processes for Electronic Materials Adopting Bi(C6H5)3 Precursor

Published online by Cambridge University Press:  28 July 2011

C. Bedoya
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, Catania, Italy
G. G. Condorelli
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, Catania, Italy
G. Anastasi
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, Catania, Italy
J. Lisoni
Affiliation:
IMEC, Leuven, Belgium
D. Wouters
Affiliation:
IMEC, Leuven, Belgium
I.L. Fragalà
Affiliation:
Dipartimento di Scienze Chimiche, Università di Catania, Catania, Italy
Get access

Abstract

MOCVD of Bi2O3 has been investigated using Bi(C6H5)3 precursor. The decomposition products obtained at various deposition temperatures were determined using in situ FT-IR analysis. Benzene was the main product formed in the heterogeneous decomposition of Bi(C6H5)3 at temperature lower than 450°C, while above 450°C typical products of the combustion of aromatic ring were observed. The effect of oxygen on the film composition and its role in the decomposition process was evaluated by XPS depth profiles. Moreover, preliminary studies on the initial step of the film deposition suggested that Bi2O3 nucleation rate depends upon precursor partial pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Araujo, C. A., Cuchiaro, J. D., McMillan, L. D., Scott, M. C. and Scott, J. F. Nature 374, 627 (1995).Google Scholar
2. Parker, L. H., Tasch, A. F., IEEE Circuit Devices Magn. 6, 17 (1990).Google Scholar
3. Aurivillius, B. Ark. Kemi 1, 463 (1949).Google Scholar
4. Cummins, S. E., Cross, L. E., Appl. Phys. Lett. 10, 14 (1967).Google Scholar
5. Kingon, A., Nature 401, 658 (1999).Google Scholar
6. Chu, M. W., Ganne, M., Tessier, P. Y., Eon, D., Caldes, M. T., Brohan, L., Mat. Sci. Semicon. Proc. 5, 179, (2002).Google Scholar
7. Hardy, A., Van Werde, K., Vanhoyland, G. Van Bael, M. K., Mullens, J., Van Poucke, L. C., Thermochim. Acta 397, 143 (2003).Google Scholar
8. Bu, S. D., Kang, B. S., Park, B. H., Noh, T. W., J. Korean Phys. Soc. 36, 9 (2000).Google Scholar
9. Williams, P. A., Jones, A. C., Crosbie, M. J., Wright, P. J., Bickley, J. F., Steiner, A., Davis, H. O., Leedham, T. L., Critchlow, G. W., Chem. Vapor. Depos 7, 205 (2001).Google Scholar
10. Ramesh, R., Aggarwal, S., Auciello, O. Mater. Sci. Eng., R-Rep 32, 191, (2001).Google Scholar
11. Zambrano, R. Mat. Sci. Semicon. Proc. 5, 305 (2002).Google Scholar
12. Nukaga, N., Ono, H., Shida, T., Machida, H., Suzuki, T., Funakubo, H., Integr. Ferroelectr. 4, 21 (2002).Google Scholar
13. Kang, S. W., Rhee, S.W., J Electrochem. Soc. 150, C573 (2003)., 150, C573.Google Scholar
14. Bedoya, C., Condorelli, G. G., Anastasi, G., Baeri, A., Scerra, F., Fragalà, I. L., Lisoni, J., Wouters, D., Chem. Mat. submittedGoogle Scholar
15. Condorelli, G. G., Gennaro, S., Fragalà, I. L., Chem. Vapor. Depos, 6, 185, (2000).Google Scholar
16. Colthup, N. B., Daly, L. H., Wibiberley, S. E., Introduction to Infrared and Raman Spectroscopy (Academic Press, New York, 1964) p. 220.Google Scholar
17. Wu, W. C., Liao, L. F., Lien, C. F., Lin, J. L., Phys. Chem. Chem. Phys. 3, 4456 (2001).Google Scholar
18. Viste, M. J., Gibson, K. D., Sibener, S. J., J. Catal. 191, 237 (2000).Google Scholar
19. Fadden, M. J., Hadad, C. M., J. Phys. Chem. A 104, 8121 (2000).Google Scholar
20. Sun, S., Lu, P., Fuierer, A., J. Cryst. Growth 205, 177 (1999).Google Scholar