Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-15T09:40:02.485Z Has data issue: false hasContentIssue false

A Model to Explain the Variations of “End-of-Range” Defect Densities with Ion Implantation Parameters

Published online by Cambridge University Press:  25 February 2011

L. Laanab
Affiliation:
CEMES/CNRS, BP 4347, 31055, Toulouse, France
C. Bergaud
Affiliation:
LAAS/CNRS, 7 av. du Colonel Roche, 31077 Toulouse, France
M. M. Faye
Affiliation:
CEMES/CNRS, BP 4347, 31055, Toulouse, France
J. Faure
Affiliation:
INSERM U314,21 rue C. Ader, 51100 Reims, France
A. Martinez
Affiliation:
LAAS/CNRS, 7 av. du Colonel Roche, 31077 Toulouse, France
A. Claverie
Affiliation:
CEMES/CNRS, BP 4347, 31055, Toulouse, France
Get access

Abstract

Computer simulations in conjunction with TEM experiments have been used to test the different models usually adopted in the literature to explain the formation of “End Of Range”(EOR) defects which appear after annealing of preamorphized silicon layers. Only one survives careful experimental investigations involving Si+, Ge+, Sn+ amorphization at RT and LNT. The “excess-interstitial” model appears relevant at least for a semi-quantitative explanation of the source of point-defects which after recombination and agglomeration, lead to the formation of these defects. This model may be used for the numerical optimization of conditions for the production of high performances ullra-shallow junctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kakoschke, R. and Ehinger, K., Nucl. Instrum. Methods B, 37/38 823 (1989).Google Scholar
Akasaka, Y., Nucl. Instrum. Methods B, 37/38, 9 (1989).Google Scholar
Tokuyama, M., Nucl. Instrum. Methods B, 37/38 744 (1989).Google Scholar
[2] Hong, S. N., Ruggles, G. A., Wortman, J. J., Myers, E. R. and Hren, J. J., IEEE Trans. Electron Devices, 38, 28 (1991).CrossRefGoogle Scholar
Hong, S. N., Ruggles, G. A., Wortman, J. J. and Ozturk, M. C., IEEE Trans. Electron Devices, 38, 476 (1991).CrossRefGoogle Scholar
[3] Kim, Y. M., Lo, G. Q., Kinoshita, H., Kwong, D. L., Tseng, H. H. and Hance, R., J. Electrochem Soc, Vol. 138, No. 4, 1122 (1991).Google Scholar
[4] Schreutelkamp, R. J., Lu, W. X., Saris, F. W., Jaussen, K. T. F., Ottenheim, J. J. M., Kaim, R. and Westendorp, J. F. M., Mater. Res. Soc. Symp. Proc, 157, 691 (1990).Google Scholar
[5] Miyake, Masayasu, J. Electrochem. Soc, Vol. 137, No. 9. 2860 (1990).Google Scholar
[6] Wu Sedgwick, N. R., Michel, A. E., Deline, V. R. and Cohen, S. A., J. Appl Phys., 63, 1452 (1988).CrossRefGoogle Scholar
[7] Wu, N. R., Ling, P., Sadana, D. K., Washbum, J. and Current, M. I., In Defects in Silicon, edited by Bullis, W. M. and Kimerling, L. C. (Electrochemical Society, Pennington, NJ), 366 (1983).Google Scholar
[8] Jones, K. S. and Venables, D., J. Appl Phys. 69 (5), 2931 (1991).Google Scholar
[9] Thornton, J., Webb, R. P., Wilson, I. H. and Paus, K. C., Semicond. Sci. Technol., 3, 281 (1988).CrossRefGoogle Scholar
[10] Laanab, L. et al., unpublished.Google Scholar
[11] Biersak, and Haggmark, , Nucl. Instrum Methods, 174, 257 (1980).Google Scholar
[12] Faure, J., Claverie, A., Laanab, L. and Bonhomme, P., Mat. Sci. Eng., in print.Google Scholar
[13] Claverie, A., Vieu, C., Faure, J. and Beauvillain, J., J. Appl Phys. 64 (9), 4415 (1988).Google Scholar