Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T19:49:06.936Z Has data issue: false hasContentIssue false

Modification and Characterization of Si-Based Nanobuilding Blocks Precursors for Hybrid Materials

Published online by Cambridge University Press:  01 February 2011

Fayna Mammeri
Affiliation:
Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Università di Trento, Via Mesiano 77, 38050 Trento, Italy
Najiba Douja
Affiliation:
Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Università di Trento, Via Mesiano 77, 38050 Trento, Italy
Christian Bonhomme
Affiliation:
Laboratoire de Chimie de la Matière Condensée, UMR-CNRS 7574, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
François Ribot
Affiliation:
Laboratoire de Chimie de la Matière Condensée, UMR-CNRS 7574, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
Florence Babonneau
Affiliation:
Laboratoire de Chimie de la Matière Condensée, UMR-CNRS 7574, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
Sandra Dirè
Affiliation:
Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Università di Trento, Via Mesiano 77, 38050 Trento, Italy
Get access

Abstract

New functional nanobuilding blocks have been successfully synthesized by hydrosilylation of unsaturated alcohols with dimethylsiloxy isobutyl-POSS and further acylation with methacryloylchloride. The solvent influence on the reaction pathway has been studied, and reaction steps and final nano-objects have been characterized using multinuclear NMR and FTIR spectroscopy. The organic spacer chain length between the inorganic cage and the reactive methacrylate function has been changed in order to modify the reactivity of the final functional nanobuilding block in the polymerization process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ribot, F. and Sanchez, C., Comments Inorg. Chem. 1999, 20(4–6), 327371 and REFERENCES herein.Google Scholar
2. Sanchez, C., Soler-Illia, G.J. A. A., Ribot, F., Lalot, T., Mayer, C. R. and Cabuil, V., Chem. Mater. 2001, 13(10), 30613083 and REFERENCES herein.Google Scholar
3. Bourgeat-Lami, E., J. Nanosci. Nanotech. 2002, 2(1), 124.Google Scholar
4. Kickelbick, G., Prog. Polym. Sci. 2003, 28, 83114.Google Scholar
5. Zhang, C. and Laine, R. M., J. Am. Chem. Soc. 2000, 122, 69796988.Google Scholar
6. Li, G., Wang, L., Ni, H. and Pittman, C. U. Jr, J. Inorg. Organometall. Polym. 2001, 11(3), 123154.Google Scholar
7. Gao, F., Culbertson, B. M., Tong, Y. and Schricker, S. R., Polym. Prep. 2000, 41(1), 580581.Google Scholar
8. Provatas, A., Luft, M., Mu, J. C., White, A. H., Matisons, J. G. and Skelton, B. K., J. Organomet. Chem. 1998, 565(159–164), 159164.Google Scholar
9. Bonhomme, C., Tolédano, P., Maquet, J., Livage, J. and Bonhomme-Coury, L., J. Chem. Soc., Dalton Trans. 1997, 16171626.Google Scholar
10. Pham, Q. T., Petiaud, R., Waton, H. and Llauro-Darricades, M.-F., Proton and Carbon NMR Spectra of Polymers. Penton Press, London, 1991.Google Scholar
11. Sellinger, A. and Laine, R. M., Macromol. 1996, 29(6), 23272330.Google Scholar