Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T08:08:45.267Z Has data issue: false hasContentIssue false

Modulator Structure Using In(As, P)/lnP Strained Multiple Quantum Wells Grown By Gas-Source MBE

Published online by Cambridge University Press:  21 February 2011

H. Q. Hou
Affiliation:
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093–0407
T. P. Chin
Affiliation:
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093–0407
B. W. Liang
Affiliation:
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093–0407
C. W Tu
Affiliation:
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093–0407
Get access

Abstract

In(As, P)/InP strained multiple quantum wells (SMQW's) were grown with gas-source molecular-beam epitaxy (GSMBE). A successful control of the As composition was achieved over a wide range by using two techniques. High-quality samples were characterized structurally and optically by x-ray diffractometry, transmission electron microscopy (TEM), photoluminescence (PL) and absorption measurements. Excitonic emission energy and the critical layer thickness of In(As, P)/InP SMQW's are calculated as a function of the As composition. The results show that 1.06, 1.3 and 1.55 μm excitonic emission can be achieved at room temperature using this material system. We also discuss the perspective of using In(As, P)/InP SMQW's for modulator application.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Casey, H. C. Jr. and Panish, M. B., Heterostructure Lasers, (Academic Press, New York, 1978).Google Scholar
2. Panish, M. B. and Sumski, S., J. Appl. Phys. 55, 3571 (1984).CrossRefGoogle Scholar
3. Soucail, B., Voisin, P., Voos, M., Rondi, D., Nagle, J., and Cremoux, B.de, Superlattices and Microstructures 8, 279 (1989).Google Scholar
4. Tsang, H. K., Soole, J. B. D., LeBlanc, H. P., Bhat, R., Koza, M. A., and White, I. H., Appl. Phys. Lett. 57, 2285 (1990).Google Scholar
5. Huang, K. H. and Wessels, B. W., J. Cryst. Growth 92, 547 (1988).CrossRefGoogle Scholar
6. Schneider, R. P. Jr., Li, D. X., and Wessels, B. W., J. Electrochem. Soc. 136, 3490 (1989).Google Scholar
7. Woodward, T. K., Sizer, T., and Chiu, T. H., Appl. Phys. Lett. 58, 1366 (1991).CrossRefGoogle Scholar
8. Hou, H. Q., Tu, C. W., and Chu, S. N. G., Appl. Phys. Lett. 58, (1991), (to be published).Google Scholar
9. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
10. People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322 (1985); 49, 229 (E) (1986).Google Scholar
11. Fukui, T. and Kobayashi, N., J. Cryst. Growth 71, 9 (1985).Google Scholar
12. Schneider, R. P. Jr. and Wessels, B. W., Superlattices and Microstructures 6, 287 (1989); and Mat. Res. Soc. Symp. Proc. 145, 145 (1989).CrossRefGoogle Scholar
13. Bastard, G. and Brum, J. A., IEEE J. Quantum Eletron. OE– 22, 1625 (1986).CrossRefGoogle Scholar
14. Landolt-Bornstein New Series, Group III, vol.22a, edited by Madelung, O., (Springer- Verlag, Berlin, 1988).Google Scholar
15. Andersson, T. G., Chen, Z. G., Kulakovskii, V. D., Uddin, A., and Vallin, J. T., Appl. Phys. Lett. 51, 752 (1987).Google Scholar
16. Woodward, T. K., Sizer, T., Sivco, D. L., and Cho, A. Y., Appl. Phys. Lett. 57, 548 (1990).CrossRefGoogle Scholar