Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T16:57:10.468Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of Neutron Damage in β-SIC

Published online by Cambridge University Press:  15 February 2011

J.M. Perlado
Affiliation:
Instituto de Fusión Nuclear (DENIM), Universidad Politécnica de Madrid, José Gutiérrez Abascal, 2; Madrid – 28006, SPAIN
L. Malerba
Affiliation:
Instituto de Fusión Nuclear (DENIM), Universidad Politécnica de Madrid, José Gutiérrez Abascal, 2; Madrid – 28006, SPAIN, malerba@denim.upm.es
T. Diaz De La Rubia
Affiliation:
Chemistry and Materials Division, Lawrence Livermore N.L., Livermore, CA 94550, USA
Get access

Abstract

Molecular Dynamics (MD) simulations of neutron damage in β-SiC have been performed using a modified version of the Tersoff potential. The Threshold Displacement Energy (TDE) for Si and C atoms at 300 K has been determined along directions [001], [110], [111] and [ 1 1 1 ]. The existence of recombination barriers, which allow the formation of metastable, temperature-sensitive defects even below the threshold, has been observed. Displacement cascades produced by both C- and Si-recoils of energies spanning from 0.5 keV up to, respectively, 5 keV and 8 keV have also been simulated at 300 K and 1300 K. Their analysis, together with the analysis of damage accumulation (∼3.4×10-3 DPA) at 1300 K, reveals that the two sub-lattices exhibit opposite responses to irradiation: whereas only a little damage is produced on the “ductile” Si sub-lattice, many point-defects accumulate on the much more “fragile” C sub-lattice. A preliminary study of the nature and clustering tendency of these defects is performed. The possibility of disorder-induced amorphization is considered and the preliminary result is that no amorphization takes place at the dose and temperature simulated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sharafat, S., Najmabadi, F., Fus. Eng. & Des. 18 (1991) 215222.Google Scholar
2 Ramírez, A.S. Pérez, Caso, A., Giancarli, L., Bars, N. Le, Chaumat, G., Salavy, J.F., Szczepansky, J., J. Nucl. Mater. 233–237 (1996) 1257.Google Scholar
3 Badger, B. et al., HIBALL-I: - Madison, Univ. of Wisconsin Fusion Technology Institute, Report UWFDM-450 (1981); HIBALL-II: UWFDM-625 (1985); SIRIUS: UVFDM-568 (1984); LIBRA: UWFDM-800 (1984).Google Scholar
4 Douglas, McDonnel Aerospace Team, Report DOE/ER-54101 MDC92EO008, March 1992.Google Scholar
5 See e.g. Proc. from 1st and 2nd IEA International Workshop on “SiC/SiC Ceramic Composites for Fusion Applications”, (1st) 28-29 Oct. 1996 Ispra (VA), Italy, and (2nd) 23-24 Oct. 1997 Sendai, Japan.Google Scholar
6 Rubia, T. Díaz de la, Guinan, M.W., J. Nucl. Mater. 174 (1990) 151.Google Scholar
7 Caturla, M.J., Rubia, T. Díaz de la, Gilmer, G.H., Mat. Res. Soc. Symp. Proc. 316 (1994) 141.Google Scholar
8 Devanathan, R., Rubia, T. Díaz de la, Weber, W.J., J. Nucl. Mater. 253 (1998) 4752.Google Scholar
9 Tersoff, J., Phys. Rev. B, 39 (1989) 5566; 49 (1994) 15150; Phys. Rev. Letter, 64 (1990)Google Scholar
10 Wong, J. et al. , J. Nucl. Mater. 251 (1997) 98.Google Scholar
11 Huang, H., Ghoniem, N.M., Wong, J.K., Baskes, M.I. Modell. Simul. Mater. 251 (1997) 98.Google Scholar
12 Nordlund, K., Runeberg, N., Sundholm, D., Nucl. Inst. & Meth. B 132 (1997) 45.Google Scholar
13 Perlado, J.M., Malerba, L., Rubia, T. Díaz de la, “MD Simulation of high energy cascades and damage accumulation in β-SiC in inertial fusion conditions” - Fusion Technology, 1998 (in press).Google Scholar
14 Rubia, T. Díaz de la, Perlado, J. M., Tobin, M., J. Nucl.Mat., 233–237 (1996) 1523.Google Scholar
15 Devanathan, R., Weber, W.J., Rubia, T. Díaz de la, Nucl. Inst. & Meth. B, 141 (1998) 118.Google Scholar