Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-18T09:52:35.862Z Has data issue: false hasContentIssue false

Morphology and Magnetic Phase Transitions of Monolayer-Range Fe Films on Au(001)

Published online by Cambridge University Press:  26 February 2011

Y.-F. Liew
Affiliation:
Rensselaer Polytechnic Institute, Department of Physics, Troy, NY 12180-3590
G.-C. Wang
Affiliation:
Rensselaer Polytechnic Institute, Department of Physics, Troy, NY 12180-3590
Get access

Abstract

We have studied the morphology and magnetic phase transitions of monolayer-range Fe films on a reconstructed Au(001) surface using the combination of High-Resolution Low-Energy Electron Diffraction (HRLEED) and Surface Magneto-Optic Kerr Effect (SMOKE) techniques. Through the measurement of energy dependent angular profiles of the specularly diffracted beam, we discovered a simple method to determine not only the interfacial spacings (Fe-Au and Fe-Fe) but also to detect the build up of the second layer. For a one-level (2-D) Fe films with coverage of ∼ 0.6 monolayer (ML) perpendicular magnetization was observed. For a 1 ML equivalent 3-D film both perpendicular and in-plane magnetization were observed. The magnetic phase transitions of these magnetic islands showed finite size broadening effect. The perpendicular saturation magnetization decreases with temperature above 100°C but never vanishes and the magnetization curve has no hysteresis loop above ∼ 120°C. The implication of superparamagnetism is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Falicov, L.M., Pierce, Daniel T., Bader, S.D., Gronsky, R., Hathaway, Kristl B., Hopster, Herbert J., Lambeth, David N., Parkin, S.S.P., Prinz, Gary, Salamon, Myron, Schuller, Ivan K., and Victora, R.H., J. Mater. Res. 5, 1299 (1990).Google Scholar
2. Fu, C.L., Freeman, A.J., and Oguchi, T., Phys. Rev. Lett. 54, 2700 (1985); J.G. Gay and R. Richter, Phys. Rev. Lett. 56, 2728 (1986); J. Appl. Phys. 61, 3362 (1987); Chun Li, A.J. Freeman, H.J.F. Jansen, and C.L. Fu, Phys. Rev. B 42, 5433 (1990).Google Scholar
3. Bader, S.D. and Liu, C., J. Vac. Sci. Technol. A, to be published; W. Diirr, M. Taborelli, 0. Paul, R. Germar, W. Gudat, D. Pescia, and M. Landolt, Phys. Rev. Lett. 62, 206 (1989); C.M. Schneider, P. Bressler, P. Schuster, and J. Kirschner, Phys. Rev. Lett. 64, 1059 (1990).Google Scholar
4. Egelhoff, W.F. Jr, in CRC Crit. Rev in Solid State and Mater. Sci. Vol. 16, 213 (1990); S.Y. Tong and C.H. Li, Phys. Rev. Lett., Vol. 10, 209 (1981).Google Scholar
5. The Structure of Surfaces II, Vol. 11 of Springer Series in Surface Sciences, edited by Veen, J.F. van der and Hove, M.A. Van (Springer, Berlin, 1988).Google Scholar
6. Chambliss, D.D., Wilson, R.J., and Chiang, S., J. Vac. Sci. Technol. B9, 933 (1991).Google Scholar
7. Scheithauer, U., Meyer, G., and Henzler, M., Surf. Sci. 178, 441 (1986).Google Scholar
8. Lu, T.-M. and Lagally, M.G., Surf. Sci. 99, 695 (1980).Google Scholar
9. Qian, J.-P. and Wang, G.-C., J. Vac. Sci. Technol. A8, 4117 (1990), and references therein.Google Scholar
10. Liew, Y.-F. and Wang, G.-C., Surf. Sci. 227, 190 (1990).Google Scholar
11. Pimbley, J.M. and Lu, T.-M., J. Appl. Phys. 57, 1121 (1985).Google Scholar
12. Henzler, M., Surf. Sci. 22, 12 (1970).Google Scholar
13. Liew, Y.-F., He, Y.-L., Chan, A., and Wang, G.-C., to be published.Google Scholar
14. Finnis, M.W. and Heine, V., J. Phys. F: Metal Phys. A, L37 (1974); P. Jiang, F. Jona, and P. Marcus, Phys. Rev. B. 35, 7952 (1987).CrossRefGoogle Scholar
15. Jacob, I.S. and Bean, C.P. in Magnetism Vol. III, edited by Rado, G.T. and Suhl, H. (Academic Press, New York, 1963) pp. 275280.Google Scholar