Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-21T05:16:33.243Z Has data issue: false hasContentIssue false

Multi-Wafer VPE Growth of Highly Uniform SiC Epitaxial Layers

Published online by Cambridge University Press:  10 February 2011

M. J. O'Loughlin
Affiliation:
Advanced Technology Laboratories, Northrop Grumman ES3, PO Box 1521 Baltimore, MID 21203, michaelhjoloughlin@md.northgrum.com
H. D. Nordby Jr.
Affiliation:
Advanced Technology Laboratories, Northrop Grumman ES3, PO Box 1521 Baltimore, MID 21203, michaelhjoloughlin@md.northgrum.com
A. A. Burk Jr/
Affiliation:
current address, Cree Research, Durham, NC
Get access

Abstract

A multi-wafer silicon carbide vapor phase epitaxy reactor is employed that features full planetary motion and is capable of high quality epitaxy on seven, two-inch diameter substrates. We are currently performing preproduction growths of static induction transistor (SIT) and metal semiconductor field effect transistor (MESFET) active layers. On a 2-inch diameter substrate, layer uniformity is typically ±5% (standard deviation/mean) for both dopant concentration and layer thickness (for 1 3/8-inch substrates, layer uniformity is around ±3%). For the seven wafers within a run, interwafer uniformity has been dramatically improved to approximately ±8% for dopant concentration and ±3% for layer thickness. Process control charts will be presented which exhibit that interrun (run-to-run) variation in both thickness and doping can be kept within ±10% of the desired values.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sriram, S., Augustine, G., Burk, A. A. Jr, Glass, R.C., Hobgood, H. M., Orphanos, P. A., Rowland, L.V., Smith, T. J., Brandt, C. D., Driver, M. C., and Hopkins, R. H., IEEE Electron Device Lett., EDL–17, p. 369 (1996).10.1109/55.506370Google Scholar
2. Siergiej, R. R., Sriram, S., Clarke, R. C., Agarwal, A. K., Brandt, C. D., Burk, A. A. Jr, Smith, T. J., Morse, A, and Orphanos, P. A., Tech. Digest Int. Conf. SiC and Rel. Mat'95, (Kyoto, Japan 1995), p. 321.Google Scholar
3. Burk, A. A. Jr, O'Loughlin, M. J., Siergiej, R. R., Agarwal, A. K., Sriram, S., Clarke, R. C., MacMillan, M. F., Balakrishna, V., and Brandt, C. D., J. Solid State Electronics, accepted for publication.Google Scholar
4. Aixtron Inc. Kackerstr. 15–17, D-52072 Aachen, Germany.Google Scholar
5. Frijlink, P. M., J. Crystal Growth, 93, p. 207 (1988).10.1016/0022-0248(88)90529-5Google Scholar
6. Burk, A. A. Jr, O'Loughlin, M. J., and Nordby, H. D. Jr, J. Crystal Growth, accepted for publication.Google Scholar
7. Burk, A. A. Jr, O'Loughlin, M. J., and Mani, S. S., in Silicon Carbide, III-Nitrides, and Related Materials, edited by G., Pensl, H., Morkoq, B., Monemar, and E., Janzén (Materials Science Forum, 264–268, Trans Tech Publications, Switzerland 1998), p. 8388.Google Scholar
8. Calcarb, Inc., Rancocas, New Jersey, USA.Google Scholar