Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-20T00:12:00.242Z Has data issue: false hasContentIssue false

Nanocrystalline and Nanostructured High-Performance Permanent Magnets

Published online by Cambridge University Press:  21 March 2011

D. Goll
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
W. Sigle
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
G.C. Hadjipanayis
Affiliation:
University of Delaware, Newark, U.S.A.
H. Kronmüller
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
Get access

Abstract

The rather complex correlation between the microstructure and the magnetic properties is demonstrated for two types of high-quality RE-TM permanent magnets (pms), namely nanocrystalline RE2Fe14B (RE = Nd,Pr) and nanostructured Sm2(Co,Cu,Fe,Zr)17 pms. The detailed analysis of this correlation for both pm materials leads to a quantitative comprehension of the hardening mechanism enabling the optimization of their magnetic properties and temperature dependences. In the case of RE2Fe14B, isotropic bonded pms are fabricated showing maximum energy products in the order of 90 kJ/m3. In the case of Sm2(Co,Cu,Fe,Zr)17, magnets with excellent high-temperature magnetic properties are tailored. Hereby, the investigations in addition provide important clues to the evolution of the characteristic microstructural and magnetic properties and to the role of the involved elements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Strnat, K.J., Hoffer, G., Olsen, J.C., Ostertag, W., Becker, J.J., J. Appl. Phys. 38, 1001 (1967).Google Scholar
[2] Croat, J.J., Herbst, J.F., Lee, R.W., Pinkerton, F.E., J. Appl. Phys. 55, 2078 (1984).Google Scholar
[3] Sagawa, M., Fujimura, S., Togawa, M., Matsuura, Y., J. Appl. Phys. 55, 2083 (1984).Google Scholar
[4] Hadjipanayis, G.C., Hazzleton, R.C., Lawless, K.R., J. Appl. Phys. 55, 2073 (1984).Google Scholar
[5] Buschow, K.H.J., in Handbook of Magnetic Materials, ed. Buschow, K.H.J. (Elsevier, North-Holland-Amsterdam), Vol. 10 (1997) 463.Google Scholar
[6] Liu, J.F., Zhang, Y., Ding, Y., Dimitrov, D., Hadjipanayis, G.C., in Proceedings of the 15th International Workshop on REM and their applications, Dresden, Germany, ed. Schultz, L., Müller, K.H. (1998) 607.Google Scholar
[7] Chen, C.H., Walmer, M.S., Walmer, M.H., Liu, S., Kuhl, E., Simon, G., J. Appl. Phys. 83, 6706 (1998).Google Scholar
[8] Kronmüller, H., in Supermagnets, hard magnetic materials, Kluwer, Dordrecht, eds. Long, G.J., Grandjean, F. (1991) 461.Google Scholar
[9] Manaf, A., Buckley, R.A., Davies, H.A., Leonowicz, M.: J. Magn. Magn. Mater. 101, 360 (1991).Google Scholar
[10] Bauer, J., Seeger, M., Zern, A., Kronmüller, H.: J. Appl. Phys. 80, 1667 (1996).Google Scholar
[11] Goll, D., Seeger, M., Kronmüller, H.: J. Magn. Magn. Mater. 185, 49 (1998).Google Scholar
[12] Kneller, E.F., Hawig, R., IEEE Trans. Magn. 27, 3588 (1991).Google Scholar
[13] Manaf, A., Al-Khafaji, M.A., Zhang, P.Z., Davies, H.A., Buckley, R.A., Rainforth, W.M., J. Magn. Magn. Mater. 128, 307 (1993).Google Scholar
[14] Gong, W., Hadjipanayis, G.C., Krause, R.I., J. Appl. Phys. 75, 6649 (1994).Google Scholar
[15] Kronmüller, H., Fischer, R., Bachmann, M., Leineweber, T., J. Magn. Magn. Mater. 203, 12 (1999).Google Scholar
[16] Goll, D., Kronmüller, H., Naturwissenschaften 87, 423 (2000).Google Scholar
[17] Kronmüller, H., Fischer, R., Seeger, M., Zern, A., J. Phys. D 29, 2274 (1996).Google Scholar
[18] Kronmüller, H., in Proc. 11th Int. Symp. Magnetic Anisotropy and Coercivity in Rare Earth – Transition Metal Alloys, Sendai, Japan, eds. Kaneko, H. et al. (2000) S83.Google Scholar
[19] Maury, C., Rabenberg, L., Allibert, C.H., phys. stat. sol. (a) 140, 57 (1993).Google Scholar
[20] Ray, A.E., Liu, S., in Proceedings of the 12th International Workshop on REM and Their Applications, Canberra, 1992, p.552.Google Scholar
[21] Katter, M., Weber, J., Assmus, W., Schrey, P., Rodewald, W., IEEE Trans. Magn. 32, 4815 (1996).Google Scholar
[22] International Centre for Diffraction Data, U.S.A.: Powder Diffraction File.Google Scholar
[23] Khan, Y., Z. Metallkd. 65, 489 (1974).Google Scholar
[24] Stadelmeier, H.H., Reinsch, B., Petzow, G., Z. Metallkd. 89, 2 (1998).Google Scholar
[25] Percy, A.J., J. Less Common Met. 51, 153 (1977).Google Scholar
[26] Lectard, E., Allibert, C.H., Ballou, R., J. Appl. Phys. 75, 6277 (1994).Google Scholar
[27] Goll, D., Sigle, W., Hadjipanayis, G.C., Kronmüller, H., in Proc. 16th Int. Workshop on REMagnets and their Applications, Sendai, Japan, eds. Kaneko, H. et al. (2000) 61.Google Scholar
[28] Kronmüller, H., Durst, K.D., Ervens, W., Fernengel, F., IEEE Trans. Magn. 20, 1569 (1984).Google Scholar
[29] Hilzinger, H.R., Appl. Phys. 12, 253 (1977).Google Scholar
[30] Hilzinger, H.R., Kronmüller, H., Phys. Letters 51A, 59 (1975).Google Scholar
[31] Tellez-Blanco, J.C., Kou, X.C., Grössinger, R., Estevez-Rams, E., Fidler, J., Ma, B.M., in Proc. 14th Int. Workshop on RE-Magnets and their Applications, World Scientific, Singapore, eds. Missell, F.P. et al. , 707 (1996).Google Scholar
[32] Goll, D., Kleinschroth, I., Sigle, W., Kronmüller, H., Appl. Phys. Lett. 76, 1054 (2000).Google Scholar