Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T16:22:34.026Z Has data issue: false hasContentIssue false

Nanoline Formation by Using Small-Aggregate Resist and Supercritical Resist Drying

Published online by Cambridge University Press:  15 March 2011

Hideo Namatsu*
Affiliation:
NTT Basic Research Laboratories, NTT Corporation 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, JAPAN
Get access

Abstract

Nanolines as small as 7 nm wide have been formed using a small-aggregate resist and supercritical resist drying. Aggregates consisting of resist polymers cause pattern roughness and cause nanolines to break. Hydrogen silsesquioxane (HSQ) is a resist material in which the aggregates are small due to its three-dimensional network. Development with an aqueous solution of TMAH provides high-contrast patterns. The problem that nanolines formed in HSQ collapse after development is solved by a supercritical resist drying technique. Supercritical drying suppresses the swelling of the resist by the rinse solution during development and thereby prevents nanolines from collapsing. The use of both small-aggregate HSQ resist and supercritical resist drying enables free-standing nanolines with a high aspect ratio to be formed without collapse.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Manako, S., Fujita, J., Tanigaki, K., Ochiai, Y., and Nomura, E., Jpn. J. Appl. Phys. 37, 678 (1998).Google Scholar
[2] Yosin, S., Hasko, D. G., and Carecenac, F., J. Vac. Sci. Technol. B19, 311 (2001).Google Scholar
[3] Yamaguchi, T., Namatsu, H., Nagase, M., Yamazaki, K., and Kurihara, K., Appl. Phys. Lett. 71, 2388 (1997).Google Scholar
[4] Namatsu, H., Takahashi, Y., Yamazaki, K., Yamaguchi, T., Nagase, M., and Kurihara, K., J. Vac. Sci. Technol. B16, 69 (1998).Google Scholar
[5] Namatsu, H., Yamaguchi, T., Nagase, M., Yamazaki, K., and Kurihara, K., Microelectron. Eng. 41/42, 331 (1998).Google Scholar
[6] Yamaguchi, T., Namatsu, H., Nagase, M., Yamazaki, K., and Kurihara, K., Proceedings of SPIE's 23rd Annual International Symposium on Microlithography, Santa Clara, California, 1998, p.830.Google Scholar
[7] Namatsu, H., Nagase, M., Yamaguchi, T., Yamazaki, K., and Kurihara, K., J. Vac. Sci. Technol. 16, 3315 (1998).Google Scholar
[8] Namatsu, H., Yamaguchi, T., and Kurihara, K., Mat. Res. Soc. Symp. Proc. Vol. 584, p.135 (2000).Google Scholar
[9] Namatsu, H., Kurihara, K., Nagase, M., Iwadate, K., and Murase, K., Appl. Phys. Lett. 66, 2655 (1995).Google Scholar
[10] Namatsu, H., Yamazaki, K., and Kurihara, K., Microelectron. Eng. 46, 129 (1999).Google Scholar
[11] Yamazaki, K., kurihara, K., Yamaguchi, T., Namatsu, H., and Nagase, M., Jpn. J. Appl. Phys. 36, 7552 (1997).Google Scholar
[12] Frye, C. L. and Collins, W. T., J. Am. Chem. Soc. 92, 5586 (1970).Google Scholar
[13] Fujita, J., Ohnishi, Y., Ochiai, Y., Nomura, E., and Matsui, S., J. Vac. Sci. Technol. B14, 4272 (1996).Google Scholar
[14] Namatsu, H., J. Vac. Sci. Technol. B19, 2709 (2001).Google Scholar
[15] Namatsu, H., Yamazaki, K., and Kurihara, K., J. Vac. Sci. Technol. B18, 780 (2000).Google Scholar
[16] Namatsu, H., J. Vac. Sci. Technol. B18, 3308 (2000).Google Scholar
[17] Gouw, T. H. and Jentoft, R. E., J. Chromatogr. 68, 303 (1972).Google Scholar