Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-07T19:22:18.698Z Has data issue: false hasContentIssue false

Nanopatterned Si(001) Substrates as Templates for Quantum Dot Growth

Published online by Cambridge University Press:  10 February 2011

A. Ney
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D–10117 Berlin, Germany
C. Pampuch
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D–10117 Berlin, Germany
J. J. Schulz
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D–10117 Berlin, Germany
L. Perepelittchenko
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D–10117 Berlin, Germany
R. Koch
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D–10117 Berlin, Germany
Get access

Abstract

It has been shown recently, that the formation of GeSi quantum dots on Si(001) is strongly affected by the surface properties of the substrate. With an increasing number of missing dimer vacancies the growth mode can even change from a Stranski-Krastanow to a kinetic 3D island growth mode. Here we report on atomically resolved scanning tunneling microscopy images of Si(001) after different preparation procedures, namely the conventional high temperature procedure employed for commercial wafers, and Shiraki-type samples which require only low temperature treatment. The latter method yields an atomically flat Si(001) (2 × 1) surface, however, with a defect (ad- and missing dimers) concentration depending on the respective preparation conditions. Furthermore, repeated flashing occasionally yields a (2 × n) reconstructed surface consisting of well-ordered self-assembled trenches of missing dimers, similar to the ones discussed controversially in the previous literature. From our results we can clearly exclude contaminants to be involved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hovis, J. S., Lui, H., and Hamers, R. J., Surf. Sci. 402–404, 1 (1998).Google Scholar
2. Lagally, M. G., Physics Today 46, No. 11, 24 (1993).Google Scholar
3. Swartzentruber, B. S., Mo, Y.W., Webb, M. B., and Lagally, M. G., J. Vac. Sci. Technol. A 7, 2901 (1989).Google Scholar
4. Hata, K., Kimura, T., Ozawa, S., and Shigekawa, H., J. Vac. Sci. Technol. A 18, 1933 (2000).Google Scholar
5. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 144, 3765 (1986).Google Scholar
6. Okumura, H., Akane, T., Tsubo, Y., and Matsumoto, S., J. Electrochem. Soc. 144, 3765 (1997).Google Scholar
7. Koch, R., Wedler, G., Schulz, J.J., and Wassermann, B., Phys. Rev. Lett. 87, 136104 (2001).Google Scholar
8. Smith, A.R., Men, F.K., Chao, K.J., Zhang, Z., and Shih, C.K., J. Vac. Sci. Technol. B 14, 909 (1996).Google Scholar
9. Haase, O., Borbonus, M., Muralt, P., Koch, R., and Rieder, K. H., Rev. Sci. Instrum. 61, 1480 (1990).Google Scholar
10. Johnson, K. E., Wu, P. K., Sander, M., and Engel, T., Surf. Sci. 290, 213 (1993).Google Scholar
11. Men, F.K., Smith, A. R., Chao, K.J., Zhang, Z., and Shih, C.K., Phys. Rev. B 52, R8650 (1995).Google Scholar
12. Tromp, R. M. and Mancos, M., Phys. Rev. Lett. 81, 1050 (1998).Google Scholar
13. Kobayashi, A., Grey, F., Snyder, E., andAono, M., Phys. Rev. B 49, 8067 (1994).Google Scholar
14. Hata, K., Ishida, M., Miyake, K., and Shigekawa, H., Appl. Phys. Lett. 73, 40 (1998).Google Scholar