Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-09T22:19:14.682Z Has data issue: false hasContentIssue false

Nanosecond Dynamics of Excimer Laser Induced Thermal Decompositon of Thin Polymer Films

Published online by Cambridge University Press:  28 February 2011

X. D. Wu
Affiliation:
Physics Department, Rutgers University, Piscataway, NJ 08854
D. Dijkkamp
Affiliation:
Bell Communications Research, Inc., Red Bank, NJ 07701
A. S. Gozdz
Affiliation:
Bell Communications Research, Inc., Red Bank, NJ 07701
T. Venkatesan
Affiliation:
Bell Communications Research, Inc., Red Bank, NJ 07701
Get access

Abstract

A novel method to study the effect of rapid heating on polymers is presented. Nanosecond time resolved reflectivity measurements of thermal decomposition of poly(3-butenyltrimethylsilane sulfone) (PBTMSS) and polymethylmetacrylate (PMMA) films spun on silicon wafers and irradiated by a pulsed excimer laser at 248 nm are reported. It was found that there exists a critical temperature for effective decomposition. The time scale for thermal decomposition is comparable with the time scales determined for photo-ablation processes. The results indicate that thermal effects are very important in the interaction between polymers and pulsed UV-lasers.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Srinivasan, R., in Laser Processing and Diagnostics, edited by D., Bauerle (Spring series in Chemical Physics, New York, 1984), Vol.39, p. 343.CrossRefGoogle Scholar
2. Kawamura, Y., Toyoda, K. and Namba, S., J. Appl. Phys. 53, 6489 (1982).CrossRefGoogle Scholar
3. Linsker, R., Srinivasan, R., Wynne, J. J. and Alonso, D. R., Lasers in Surgery and Medicine 4, 201 (1984).CrossRefGoogle Scholar
4. Gorodetsky, G., Kazyaka, T. G., Melcher, R. L. and Srinivasan, R., Appl. Phys. Lett. 46, 828 (1985).Google Scholar
5. Dyer, P. E. and Srinivasan, R., Appl. Phys. Lett. 48, 445 (1986).Google Scholar
6. Davis, G. M., Gower, M. C., Fotakis, C., Efthimiopoulos, T. and Argyrakis, P., Appl. Phys. A 36, 27 (1985); G. Koren and J. G. C. Yeh, J. Appl. Phys. 56, 2120 (1984).Google Scholar
7. Danielzik, B., Fabricius, N., Rowekamp, M. and von der Linde, D., Appl. Phys. Lett. 48, 212 (1986).Google Scholar
8. Dyer, P. E. and Sidhu, J., J. Appl. Phys. 57, 1420 (1985).Google Scholar
9. Garrison, B. J. and Srinivasan, R., Appl. Phys. Lett. 44, 849 (1984).Google Scholar
10. Sutcliffe, E. and Srinivasan, R., J. Appl. Phys. 60, 3315 (1986).CrossRefGoogle Scholar
11. Gozdz, A. S., Carnazza, C., Bowden, M. J., Proc. SPIE, 631, 2 (1986).Google Scholar
12. Auston, D. H., Golovchenko, J. A., Simons, A. L., Surko, C. M., N.C.Venkatesan, T., Appl. Phys. Lett. 34, 777 (1979).Google Scholar
13. The absorption coefficient of PMMA at 248 nm depends strongly on the quality of the PMMA solution used. Philipp, H. R., Colef, H. S., Liu, Y. S. and Sifnik, T., Appl. Phys. Lett. 48, 192 (1986).Google Scholar
14. Heavens, O. S., Optical Properties of Thin Solid Films, (Dover Publications, Inc., New York, 1965).Google Scholar
15. Wood, R. F., White, C. W. and Young, R. T., eds., Pulsed Laser Processing of Semiconductors (Academic Press, New York, 1984).Google Scholar
16. Touloukian, Y. S., Powell, R. W., Hu, C. Y., and Nicolaou, M. C., Thermal Diffusivity (Plenum, New York, 1973).Google Scholar
17. Srinivasan, V., Smrtic, M. A. and Babu, S. V., J. Appl. Phys. 59, 3861 (1986).Google Scholar
18. Brannon, J. H., Lankard, J. R., Baise, A. I., Burns, F. and Kaufman, J., J. Appl. Phys. 58, 2036 (1986).Google Scholar