Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T06:49:59.957Z Has data issue: false hasContentIssue false

Nano-Sized Lithium Manganese Phosphate/Carbon Nanotube Composites with Enhanced Electrochemical Activity for Lithium-Ion Batteries

Published online by Cambridge University Press:  20 July 2012

Satoru Tsumeda
Affiliation:
United Chemi-Con, Inc. (Nippon Chemi-Con Corp. Group), 625 Columbia Street, Brea, CA 92821, U.S.A.
Scott D. Korlann
Affiliation:
United Chemi-Con, Inc. (Nippon Chemi-Con Corp. Group), 625 Columbia Street, Brea, CA 92821, U.S.A.
Shunzo Suematsu
Affiliation:
United Chemi-Con, Inc. (Nippon Chemi-Con Corp. Group), 625 Columbia Street, Brea, CA 92821, U.S.A.
Kenji Tamamitsu
Affiliation:
Nippon Chemi-Con Corporation, 363 Arakawa, Takahagi, Ibaraki 318-8505, Japan
Get access

Abstract

Olivine lithium manganese phosphate, LiMnPO4 is a promising cathode material for high energy and safe lithium ion batteries. However, LiMnPO4 possesses excessively poor electrochemical activity, compared to conventional cathode materials. To enhance the electrochemical activity, we have synthesized LiMnPO4/multi-walled carbon nanotube (MWCNT) composites by employing an in-situ sol-gel method. The LiMnPO4/MWCNT composites were investigated by utilizing X-ray diffraction, thermogravimetric analysis, scanning electron microscope, transmission electron microscope, and galvanostatic charge-discharge cycling. The LiMnPO4 showed a particle size of ca. 50 nm and capacity of 102 mAh/g at 0.1 C without C.V. charging mode. This study demonstrated that the electrochemical activity of LiMnPO4 was significantly affected by not only pH and the amount of a chelating agent but also unreacted Mn2+. This is the first report analyzing the existence and effects of unreacted Mn2+ in LiMnPO4 synthesized by a sol-gel method.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Padhi, A. K., Nanjundaswamy, K. S., and Goodenough, J. B., J. Electrochem. Soc. 144, 1188 (1997).Google Scholar
2. Tobishima, S., and Yamaki, J., J. Power Sources 8182, 882 (1999).Google Scholar
3. MacNeil, D. D., Lu, Z., Chen, Z., Dahn, J. R., J. Power Sources 108, 8 (2002).Google Scholar
4. Yonemura, M., Yamada, A., Takei, Y., Sonoyama, N., and Kanno, R., J. Electrochem. Soc. 151, A1352 (2004).Google Scholar
5. Delacourt, C., Laffont, L., Bouchet, R., Wurm, C., Leriche, J. B., Morcrette, M., Tarascon, J. M., and Masquelier, C., J. Electrochem. Soc. 152, A913 (2005).Google Scholar
6. Ni, J., Kawabe, Y., Morishita, M., Watabe, M. and Sakai, T., J. Power Sources 196, 8104 (2011).Google Scholar
7. Wang, D., Ouyang, C., Drézen, T., Exnar, I., Kay, A., Kwon, N. H., Gouerec, P., Miners, J. H., Wang, M., and Grätzel, M., J. Electrochem. Soc. 157, A225 (2010).Google Scholar
8. Kim, J., Park, Y. U., Seo, D. H., Kim, J., Kim, S. W., and Kang, K., J. Electrochem. Soc. 158, A250 (2011).Google Scholar
9. Martha, S. K., Markovsky, B., Grinblat, J., Gofer, Y., Haik, O., Zinigrad, E., Aurbach, D., Drezen, T., wang, D., Deghenghi, G., and Exnar, I., J. Electrochem. Soc. 156, A541 (2009).Google Scholar
10. Drezen, T., Kwon, N. H., Bowen, P., Teerlinck, I., Isono, M, and Exna, I, J. Power Sources 174, 949 (2007).Google Scholar
11. Naoi, K., Ishimoto, S., Isobe, Y., and Aoyagi, S., J. Power Sources 195, 6250 (2010).Google Scholar
12. www.chemi-con.co.jp, “News Release from Tokyo University of Agriculture and Technology and Nippon Chemi-Con Corporation,” May 6 (2010).Google Scholar
13. Kaymaksiz, S., Kaskhedikar, N., Sato, N., Roth, S., and Weglikowska, U. D.-, ECS transactions, 25, 187 (2010).Google Scholar
14. Delacourt, C., Poizot, P., Morcrette, M., Tarascon, J.-M., and Masquelier, C., Chem. Mater. 16, 93 (2004).Google Scholar