Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T04:42:00.118Z Has data issue: false hasContentIssue false

Nanowire and Nanotube Syntheses Through Self-assembled Nanoporous AAO Templates

Published online by Cambridge University Press:  10 February 2011

H. Hau Wang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Catherine Y. Han
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Gerold A. Willing
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Zhili Xiao
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Nanowires and nanotubes have attracted significant interest during recent years due to their novel electrical, magnetic, and photonic properties. Quantum confinement, proximity interaction, and surface plasmon enhancement effects are among a few unique phenomena associated with these materials. A convenient procedure to prepare these materials is through anodized aluminum oxide (AAO) template synthesis. Nanoporous AAO membranes with pore diameters ranging from 10 to 200 nm can be prepared with anodization in oxalic, sulfuric and phosphoric acids under various reaction conditions. With repeated anodization-etching cycles, highly ordered straight channels can be prepared through self-organization. With electro- and electroless deposition, a variety of nanowires and nanotubes such as Ni, Co, Au, Pb, Bi, etc. have been prepared. The synthesis, characterization, and physical properties of these materials are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vaucher, S., Li, M., and Mann, S., Angew. Chem. Int. Ed. 39, 1793 (2000).Google Scholar
2. Thurn-Albrecht, T., Schotter, J., Kastle, G. A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C. T., Tuominen, M. T., and Russell, T. P., Science 290, 2126 (2000).Google Scholar
3. Vlasov, Y. A., Bo, X. Z., Sturm, J. C., and Norris, D. J., Nature 414, 289 (2001).Google Scholar
4. Thompson, G. E. and Wood, G. C., Nature 290, 230 (1981).Google Scholar
5. Masuda, H. and Fukuda, K., Science 268, 1466 (1995).Google Scholar
6. Keller, F., Hunter, M. S., and Robinson, D. L., J. Electrochem. Soc. 100, 411 (1953).Google Scholar
7. O'Sullivan, J. P. and Wood, G. C., Proc. Roy. Soc. Lond. A 317, 511 (1970).Google Scholar
8. Li, A. P., Müller, F., Birner, A., Nielsch, K., and Gösele, U., J. Appl. Phys. 84, 6023 (1998).Google Scholar
9. Xiao, Z. L., Han, C. Y., Welp, U., Wang, H. H., Kwok, W. K., Willing, G. A., Hiller, J.M., Cook, R. E., Miller, D. J., and Crabtree, G. W., Nano. Lett. 2, 1293 (2002).Google Scholar
10. Xiao, Z. L., Han, C. Y., Welp, U., Wang, H. H., Vlasko-Vlasov, V. K., Kwok, W. K., Miller, D. J., Hiller, J. M., Cook, R. E., Willing, G. A., and Crabtree, G. W., Appl. Phys. Lett. 81, 2869 (2002).Google Scholar
11. Menon, V. P. and Martin, C. R., Anal. Chem. 67, 1920 (1995).Google Scholar
12. Demoustier-Champagne, S. and Delvaux, M., Mater. Sci. Eng. C 15, 269 (2001).Google Scholar
13. Steinhart, M., Wendorff, J. H., Greiner, A., Wehrspohn, R. B., Nielsch, K., Schilling, J., Choi, J., and Gösele, U., Science 296, 1997 (2002).Google Scholar