Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-13T02:51:09.126Z Has data issue: false hasContentIssue false

Nature of Low-Frequency Excess Noise in n-Type Gallium Nitride

Published online by Cambridge University Press:  15 March 2011

C. F. Zhu
Affiliation:
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong
W. K. Fong
Affiliation:
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong
B. H. Leung
Affiliation:
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong
C. C. Cheng
Affiliation:
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong
C. Surya
Affiliation:
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong
Get access

Abstract

Low-frequency noise is investigated in n-type GaN film grown by rf-plasma assisted molecular beam epitaxy. The temperature dependence of the voltage noise power spectra, SV(f), was examined from 400K to 80K in the frequency range between 30Hz and 100KHz, which can be modeled as the superposition of 1/f (flicker) noise G-R noise. At f > 500 Hz the noise is dominated by G-R noise with activation energies of 360meV and 65meV from the conduct band. The results clearly demonstrate the trap origin for both the 1/f noise and G-R noise. At the low-frequency range the fluctuation was dominated by 1/f noise. To determine the origin of the noise we considered both the bulk mobility fluctuation and the trap fluctuation models. Our experimental results showed that rapid thermal annealing (RTA) at 800°C resulted in over one order of magnitude decrease in the Hooge parameter. Annealing at temperatures in excess of 1000°C resulted in significant increase in the noise. Photoluminescence and x-ray diffraction measurements also showed that the crystallinity of the films improved with RTA at 800°C with an accompanying reduction in deep levels. Annealing at 900°C and 1000°C resulted in an increase in the FWHM of the x-ray diffraction indicative of thermal decomposition of the materials. The results are in excellent agreement with the trend of Hooge parameters as a function of annealing temperature, strongly indicating trap origin of the observed 1/f noise.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Mukai, T. and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyakum, H. Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M. and K, Chocho, Jpn. J. Appl. Phys. 36, L1568(1997).Google Scholar
3. XU, G. Y., Salvador, A., Kim, W., Fan, Z., Lu, C., Tang, H., Morkoç, H., Smith, G., Estes, M., Goldenberg, B., Yang, W. and Krishmankutty, S., Appl. Phys. Lett. 71, 2154 (1997).Google Scholar
4. , Aktas, Kim, W., Fan, Z., Bathkarav, A., Salvador, A., Mohammad, S. N., Sverdlov, B. and Morkoc, H., Electron. Lett. 31, 1389 (1995).Google Scholar
5. Nakamura, S., Senoh, M. and Mukai, T., Appl. Phys. Lett. 62, 2390 (1993).Google Scholar
6. Tansley, T. L. and Egan, R. J., Phys. Rev. B 45, 10942 (1992).Google Scholar
7. Qian, W., Skowrongski, M., Greaf, M. De, Doverspike, K., Rowland, L. B. and Gaskill, D. K., Appl. Phys. Lett. 66, 1252 (1995).Google Scholar
8. Sverdlov, B. N., Martin, G. A., Morkov, H. and Smith, D. J., Appl. Phys. Lett. 67, 2063 (1995).Google Scholar
9. Rheenen, D. Van, Bosman, G. and Zijlstra, R. J. J., Solid atate Electronic 30, 259 (1987).Google Scholar
10. Levinshtein, M. E. and Rumyantsev, S. L., Semicond. Sci. Technol. 9, 1183 (1994).Google Scholar
11. Hooge, F. N., Kleinpenning, T. G. M. and Vandamme, L. K. J., Rep. Prog. Phys. 44, 479 (1981).Google Scholar
12. Surya, C., Ng, S. H., Brown, E. R. and Maki, P. A., Appl. Phys. Lett. 62, 2262 (1993).Google Scholar
13. Ng, S. H. and Surya, C., J. Appl. Phys. 73, 7504 (1993).Google Scholar
14. Dyakonova, N. V., Levinshtein, M. E., Rumyantzev, S. L., Sov. Phys. Semicond. 25, 217 (1991).Google Scholar
15. Levinshtein, S. E., Rumyantzev, S. L., Palmour, J. W. and Slater, D. B. Jr., J. Appl. Phys. 81, 1758 (1997).Google Scholar
16. Vliet, K. M. Van and Fasset, J. R., Fluctuation in Solids, edited by Burgress, R. E., Academic Press, New York, P.267(1965).Google Scholar
17. Vavilov, V. S., Makarov, S. I., Chukichev, M. V. and Chetverikova, I. V., Semicond. 13, 2153 (1979).Google Scholar