Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-15T15:47:30.323Z Has data issue: false hasContentIssue false

New Polymer Precursors To SiNCB Materials

Published online by Cambridge University Press:  10 February 2011

T. Wideman
Affiliation:
Department of Chemistry and Laboratory for the Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104
K. SU
Affiliation:
The Advanced Ceramics Program, Dow Corning Corporation, Midland, Michigan 48686
E. E. Remsen
Affiliation:
Analytical Sciences Center, Monsanto Corporate Research, Monsanto Company, 800 North Lindbergh Blvd., St. Louis, Missouri 63167
G. A. Zank
Affiliation:
The Advanced Ceramics Program, Dow Corning Corporation, Midland, Michigan 48686
L. G. Sneddon
Affiliation:
Department of Chemistry and Laboratory for the Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Get access

Abstract

The first borazine/silazane backbone copolymers derived from the parent borazine, B3N3H6, have been obtained by the thermal condensation of borazine with either of two silazanes, tris(trimethylsilylamino)silane (TTS) or 1,1,3,3,5,5- hexamethylcyclotrisilazane (HCT), to yield copolymers of typical composition (B3N3H4)1.00(N)1.17(SiMe 3)1.16 (SiH)0.34 and (B3N3H4) 1.00(N) 1.67(SiMe 2)1.49(H) 1.5, respectively. Despite their similar compositions, upon pyrolysis the TTS copolymers yield B1.0N1.0Si<0.2 ceramics, while the ceramics derived from the HCT copolymers showed greater retention of silicon and carbon with typical compositions of B1.0N1.5Si0.4C0.2 The XRD spectra show the materials are amorphous to 1400 °C, but show crystalline phases of β-Si3N4, °C, with no diffraction from any boron-containing species. The DRIFT spectra of the ceramics, however, indicate the presence of boron nitride.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Su, K., Remsen, E. E., Zank, G. A. and Sneddon, L. G., Chem. Mater. 5, pp. 547556 (1993).Google Scholar
2. (a) O. Funayama, T. Kato, Y. Tashiro and T. Isoda, Presented at the International Organosilicon Conference, July, 1990. (b) O. Funayama, M. Arai, Y. Tashiro, N. Isoda and K. Sato, U.S. Patent No. 5,030,744, July 9, 1991. (c) Funayama, O., Kato, T., Tashiro, Y. and Isoda, T., J. Am. Ceram. Soc. 76, pp. 717723 (1993). (d) O. Funayama, H. Nakahara, M. Okoda, M. Okumura and T. Isoda, J. Mat. Sci. 30, pp. 410–416 (1995).Google Scholar
3. (a) Seyferth, D., Plenio, H., Rees, W. S. Jr., and Büchner, K. in Frontiers of Organosilicon Chemistry, edited by Bassindale, A. R., and Gaspar, P. P., Royal Society, London, 1991, pp. 1527. (b) D. Seyferth and H. Plenio, J. Am. Ceram. Soc. 73, pp. 2131–2133 (1990).Google Scholar
4. (a) Baldus, H.-P., Wagner, O. and Jansen, M., Mater. Res. Soc. Symp. Proc. 271, pp. 821826 (1992). (b) H.-P. Baldus, M. Jansen and O. Wagner, Key. Eng. Mater. 89–91, pp. 75–79 (1994). (c) J. Löffelholz and M. Jansen Adv. Mater. 7, pp. 289–292 (1995). (d) H.-P. Baldus and G. Passing, Mat. Res. Soc. Symp. Proc. 346, pp. 617–622 (1994).Google Scholar
5. Gaines, D. F. and Borlin, J. in Boron Hydride Chemistry, edited by Muetterties, E. L., Academic Press, New York, 1975, pp. 245246.Google Scholar
6. Allcock, H. R. and Lampe, F. W., Contemporary Polymer Chemistry, Prentice Hall, Englewood Cliffs, NJ, 1981, pp. 89.Google Scholar