Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-08T05:45:09.817Z Has data issue: false hasContentIssue false

New Routes to Group Iva Metal-Nitrides

Published online by Cambridge University Press:  25 February 2011

Chaitanya K. Narula*
Affiliation:
Department of Chemistry, Research Laboratory, Ford Motor Company, P.O. Box 2053, MD 3083, Dearborn, Ml 48121
Get access

Abstract

The reactions of TiCl4 with [(CH3)3Si]2NH have been examined under several reaction conditions. One of the reaction products, (CH3)3Si(H)NTiCl3, can be crystallized in 60% yield on reacting TiCl4 with TiCl4 with [(CH3)3Si]2NH in a 1:1 molar ratio in dichloromethane at -78°C. [(CH3)3Si(H)NTi(Cl2)(NH)]2TiCl2 is the primary product on increasing the amount of TiCl4 with [(CH3)3Si]2NH to two equivalents. (CH3)3Si(H)NTiCl3 and [(CH3)3Si(H)NTi(Cl2)(NH)]2TiCl2 form titanium nitride on pyrolysis at 600°C in an ammonia atmosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Better Ceramics Through Chemistry, edited by Brinker, C. J., Clark, D. E., Ulrich, D. R., (Mater. Res. Soc. Proc. 32, Pittsburgh, PA 1984).Google Scholar
Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., Ulrich, D. R., (Mater. Res. Soc. Proc. 73 Pittsburgh, PA 1986).Google Scholar
Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., Ulrich, D. R., (Mater. Res. Soc. Proc. 121 Pittsburgh, PA 1988).Google Scholar
Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., Ulrich, D. R., (Mater. Res. Soc. Proc. 180 Pittsburgh, PA 1990).Google Scholar
[2] Wynne, K. J., Rice, R. W., Ann. Rev. Mater. Sci., 14 (1984) 297.Google Scholar
[3] Paine, R. T., Narula, C. K., Chem. Rev., 90 (1990) 73.Google Scholar
[4] Kirk-Othmer Encyclopedia of Chemical Technology. Third Edition, (Wiley, New York, 23).Google Scholar
[5] Brown, G. M., Maya, L., J. Am. Ceram. Soc, 71 (1988) 78.CrossRefGoogle Scholar
[6] Mignani, G., Seyferth, D., Gov. Rep. Announce. Index (U.S.), 88 (1988) 827,109. CA 109 (1988)214,916.Google Scholar
[7] Jiang, Z., Rhine, W. E., Chem. Mater. 3 (1991) 1132.Google Scholar
[8] Lasecki, J. V., Novak, R. F., McBride, J. R., Brockway, J. T., Hunt, T. K., Proceedings of the 22nd Intersociety Energy Conversion Engineering Conference (1987) 1407.Google Scholar
[9] McBride, J. R., Schmatz, D. J., Hunt, T. K., Novak, R. F., Proceedings of the Second Symposium on Electrode Materials and Processes for Energy Conversion and Storage, Electrochemical Society, 87 (1987) 594.Google Scholar
[10] Narula, C. K., Maricq, M. M., Am. Chem. Soc, Div. Poly. Chem., 32 (1991) 499.Google Scholar
Maricq, M. M., Narula, C. K., Chem. Phys. Lett. 187 (1991) 220.Google Scholar
[11] Andrianov, K. A., Astakhin, V. V., Kuchkin, D. A., Sukhanova, I.V., Zh. Obsh. Khim., 31 (1961) 3410.Google Scholar
[12] Bürger, H., Wannagat, U., Mh. Chem., 94 (1963) 761.Google Scholar
[13] Roesky, H. W., Raubold, T., Witt, M., Bohra, R., Noltemeyer, M, Chem. Ber. 124 (1991) 1521.Google Scholar
[14] Benzing, E., Kornicker, W., Chem. Ber. 94 (1961) 2263.Google Scholar
[15] Hultman, L., Hesse, D., Chiou, W.-A., J. Mater. Res., 6 (1991) 1744.CrossRefGoogle Scholar