Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-20T16:43:30.728Z Has data issue: false hasContentIssue false

Nitrogen Incorporation and Growth Kinetics of GaAsN/GaAs Epilayers Grown by MOVPE

Published online by Cambridge University Press:  10 February 2011

Laurent Auvray
Affiliation:
Laboratoire des Multimatériaux et Interfaces (LMI), UCB-Lyon 1, CNRS-UMTR 5615 43, Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France
Hervé Dumont
Affiliation:
Laboratoire des Multimatériaux et Interfaces (LMI), UCB-Lyon 1, CNRS-UMTR 5615 43, Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France
Jacques Dazord
Affiliation:
Laboratoire des Multimatériaux et Interfaces (LMI), UCB-Lyon 1, CNRS-UMTR 5615 43, Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France
Yves Monteil
Affiliation:
Laboratoire des Multimatériaux et Interfaces (LMI), UCB-Lyon 1, CNRS-UMTR 5615 43, Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France
Jean Bouix
Affiliation:
Laboratoire des Multimatériaux et Interfaces (LMI), UCB-Lyon 1, CNRS-UMTR 5615 43, Bd du 11 Novembre 1918, 69622 Villeurbanne cedex, France
Get access

Abstract

The nitrogen incorporation behavior in GaAs was investigated in the growth temperature range 500-600°C. It was observed that the temperature-dependence of the nitrogen incorporation exhibits two regimes. At 530°C, the nitrogen content x is a nonlinear function of the gas-phase composition indicating a surface-controlled reaction mechanism. The N composition varies slowly with 500°C < T < 560°C with an activation energy of 0.6 eV. For T < 560°C, N decreases exponentially with Ea= 3.7 eV, interpreted in terms of nitrogen desorption. In light of experimental results, we propose a surface kinetic model based on the competitive adsorption of group V precursors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Saito, H.. Makimoto, T.. Kobayashi, N.. J.Crystal Growth 195, 416 (1998).10.1016/S0022-0248(98)00666-6Google Scholar
2 Ougazzaden, A., Bellego, Y. Le, Rao, E.V. K., Juhel, M.. Leprince, L.. Patriarche, G., Appl. Phys. Leti. 70, 2862 (1997).Google Scholar
3 Höhnsdorf, F., Koch, J., Agert, C.. Stolz, W., J. Crystal Growth 195. 391 (1998).10.1016/S0022-0248(98)00651-4Google Scholar
4 Friedman, D.J.. Norman, A.G.. Geisz, J.F.. Kurtz, S.R., J. Crstal Growth 208, 11 (2000).10.1016/S0022-0248(99)00523-0Google Scholar
5 Saito, H., Makimoto, T.. Kobayashi, N., J. Crystal Growth 170. 372 (1997).10.1016/S0022-0248(96)00523-4Google Scholar
6 Friedman, D.J., Norman, A.G., Geisz, J.F.. Kurtz, S.R.. J Crystal Growth 195, 438 (2000).10.1016/S0022-0248(98)00562-4Google Scholar
7 Moto, A., Tanaka, S., Ikoma, N., Tanabe, T., Takagishi, S., Takahashi, M.. Katsuyama, T.. Jpn. J. Appl. Phys. 38, 1015 (1999).10.1143/JJAP.38.1015Google Scholar
8 Sun, Y-M, Sloan, D.W., Mc Ellistrem, M.. Schwaner, A.L.. White, J.M.. J. Vac. Sci. Technol. A 13, 1455 (1995).10.1116/1.579686Google Scholar
9 Lee, R.T., Stringfellow, G.B., J. Elect. Mater. 28, 963 (1999).10.1007/s11664-999-0205-9Google Scholar
10 Pristovsek, M.. Trepk, T.. Klein, M., Zettler, J.T.. Richter, W.. J. Appl. Phys. 87, 1245 (2000).10.1063/1.372003Google Scholar
11 Massi, M., Simka, H., Jensen, K., Kuech, T., Potemski, R., J.Crystal Growth 124, 483 (1992).10.1016/0022-0248(92)90504-CGoogle Scholar
12 Kobayashi, N.. J. Crystal Growth 195, 228 (1998).10.1016/S0022-0248(98)00586-7Google Scholar
13 Koleske, D.D.. Wickenden, A.E., Henry, R.L.. DeSisto, W.J.. Gorman, R.J.. J Appl. Phys. 84, 1998 (1998).10.1063/1.368353Google Scholar