Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T15:42:10.423Z Has data issue: false hasContentIssue false

NMR studies of alkali intercalted carbon nanotubes

Published online by Cambridge University Press:  15 February 2011

M. Schmid
Affiliation:
Max-Planck-Institut für Festköperforschung, Heisenbergstr, 1, D-70569 Stuttgart, Germany GDPC, Univ. Montpellier II, F-34095 Montpellier cedex5, France 2. Physical. Inst., Universität Stuggart, Pfafferwaldring 57, D-750550 Stuttgart, Germany
C. Goze-Bac
Affiliation:
GDPC, Univ. Montpellier II, F-34095 Montpellier cedex5, France
M. Mehring
Affiliation:
2. Physical. Inst., Universität Stuggart, Pfafferwaldring 57, D-750550 Stuttgart, Germany
S. Roth
Affiliation:
Max-Planck-Institut für Festköperforschung, Heisenbergstr, 1, D-70569 Stuttgart, Germany
P. Bernier
Affiliation:
GDPC, Univ. Montpellier II, F-34095 Montpellier cedex5, France
Get access

Abstract

Lithium intercalted carbon nanotubes have attracted considerable interest as perspective components for energy storage devices. We performed 13C Nuclear Magnetic Resonance spin lattice relaxation measurements in a temperature range from 4 K up to 300 on alkali intercalated Single Walled Carbon Nanotubes in order to investigate the modifications of the electronic properties. The density of states at the Fermi level were determined for pristine, lithium and cesium intercalated carbon nanotubes and are discussed in terms of intercalation and charge transfer effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Endo, M., C., Nishimura, K., Fujino, T., and Miyashita, K., Carbon, 38, 183197 (2000).Google Scholar
[2] Wu, Y.P., Rahm, E., and R., J. Power Sources, 114, 28236 (2003).Google Scholar
[3] Petit, P., Jouguelet, E., and Mathis, C., C. Chem. phys. Lett., 318, 561564 (2000).Google Scholar
[4] Facchini, L., Quinton, M., and Legrand, A., Physica B, 99, 525530 (1980).Google Scholar
[5] Duclaux, L., Salvetat, J.P., Lauginie, P., Cacciaguera, T., Faugiere, A.M., Goze-Bag, C. and Bernier, P., J. Phys. Chem. of Solids, 64, 571581 (2003).Google Scholar
[6] Goze-Bag, C. and Bernier, P., Latill, S., Jourdain, V., Rubio, A., Jhang, S.H., Lee, S.W., Park, Y.W., Holzinger, M., and Hirsh, A., Curr. Appl. Phys., 1 149155 (2001).Google Scholar
[7] Tang, X.P., Kleinhammes, A., Fleming, L., Bennoune, K.Y., Sinha, S., Bower, C., Zhou, O., and Wu, Y., Science, 288 492494 (2000).Google Scholar