Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-05T21:28:48.562Z Has data issue: false hasContentIssue false

Novel fabrication method of ZnO films utilizing solid-phase crystallized seed layers

Published online by Cambridge University Press:  04 April 2011

Naho Itagaki
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Kazunari Kuwahara
Affiliation:
Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Get access

Abstract

A novel fabrication method of ZnO films utilizing solid-phase crystallized seed layers has been developed. In this method, solid phase crystallization (SPC) is performed by annealing amorphous ZnON films, which are prepared by sputtering of ZnO targets in Ar/N2 mixed gases, in an oxidization atmosphere. The grain size of ZnO films deposited on the seed layers is significant larger than that of ZnO films directly deposited on glass substrates, which is considered to be due to the low grain density of seed layers. By utilizing this technique, the resistivity of ZnO:Al (AZO) films is decreased from 20 × 10-4 Ωcm to 5 × 10-4 Ωcm at the film thickness of 30nm. Furthermore, we observed that SPC seed layers are in-plane aligned when Al2O3 substrates are used, which suggests that the fabrication method proposed here is also promising for synthesizing epitaxial ZnO films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Itagaki, N., Iwasaki, T., Kumomi, H., Den, T., Nomura, K., Kamiya, T., and Hosono, H., phys. stat. sol. (a), 205, 1915 (2008).Google Scholar
2. Itagaki, N., Yaginuma, S., Omura, H., Goyal, A., Sato, A., Watanabe, M., Shimada, M., Kaji, N., Takahashi, K., Ofuji, M., Watanabe, T., Shimizu, H., Abe, K., Tateishi, Y., Yabuta, H., Iwasaki, T., Hayashi, R., Aiba, T., Sano, M., and Kumomi, H., International session in 19th Symposium of The Materials Research Society of Japan, I-06-G (2009)Google Scholar
3. Imanishi, Y., Taguchia, M., and Onisawa, K., Thin Solid Films, 518, 2945 (2010).Google Scholar
4. Minami, T. and Miyata, T., Thin Solid Films, 517, 1474 (2008).Google Scholar
5. Hrbeke, G., Krausbauer, L., Steigmeier, E. F., Widmer, A. E., Kappert, H. F., and Neugebauer, G., Appl. Phys. Lett., 42, 249 (1983).Google Scholar
6. Koida, T., Fujiwara, H., and Kondo, M., Jpn. J. Appl. Phys., 46, L685 (2007).Google Scholar
7. Koida, T., Kondo, M., Tsutsumi, K., Sakaguchi, A., Suzuki, M., and Fujiwara, H., J. Appl. Phys., 107, 033514 (2010).Google Scholar
8. Ishibashi, S., Higuchi, Y., Ohta, Y., and Nakamura, K., J. Vac. Sci. Technol., A 8, 1399 (1990).Google Scholar
9. Nishimura, E., Ando, M., Onisawa, K., Takabatake, M., and Minemura, T., Jpn. J. Appl. Phys., 35, 2788 (1996).Google Scholar
10. Itagaki, N., Kuwahara, K., Nakahara, K., Yamashita, D., Uchida, G., Koga, K., and Shiratani, M., submitted to Appl. Phys. Express Google Scholar
11. Itagaki, N., to be published in Proceedings of IEEE TENCON 2010 (2010)Google Scholar
12. Masaki, Y., Lecomber, P. G., and Fitzgerald, A. G., J. Appl. Phys., 74, 129 (1993).Google Scholar