Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-22T10:35:20.397Z Has data issue: false hasContentIssue false

Nucleation in Undercooled Co-Pd Alloys

Published online by Cambridge University Press:  15 February 2011

D. Holland-Moritz
Affiliation:
Institut für Raumsimulation, DLR, D-51170 Kö1n, Germany Harvard University, Division of Engineering and Applied Sciences, Cambridge, MA 02138, USA
Th. Schenk
Affiliation:
Institut für Raumsimulation, DLR, D-51170 Kö1n, Germany
D.M. Herlach
Affiliation:
Institut für Raumsimulation, DLR, D-51170 Kö1n, Germany
Get access

Abstract

The statistics of nucleation are studied for different Co-Pd alloys by electromagnetic levitation. Each alloy was undercooled approximately 100 times under the same experimental conditions. A model developed by Skripov is employed to statistically analyze the distribution of maximum undercoolings in order to obtain information on the prevailing nucleation mechanism. The results of these investigations indicate that nucleation is influenced by magnetism when the nucleation temperature is approaching the Curie temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Herlach, D.M., Cochrane, R.F., Egry, I., Fecht, H.-J. and Greer, A.L.; International Materials Review 38, 273 (1993).Google Scholar
[2] Platzek, D., Notthoff, C., Herlach, D.M., Jacobs, G. and Maier, K., Appl. Phys. Lett. 65, 1723 (1994).Google Scholar
[3] Reske, J., Herlach, D.M., Keuser, F., Maier, K. und Platzek, D., Phys. Rev. Lett. 75, 737 (1995).Google Scholar
[4] Herlach, D., Bührer, C., Herlach, D.M., Maier, K., Notthoff, C., Platzek, D. and Reske, J., Europhys. Lett. 44, 98 (1998).Google Scholar
[5] Albrecht, T., Bührer, C., Fähnle, M., Maier, K., Platzek, D. and Reske, J., J. Appl. Phys. A 65, 215 (1997).Google Scholar
[6] Herlach, D.M., Holland-Moritz, D., Schenk, Th., Schneider, K., Wilde, G., Boni, O., Fransaer, J. and Spaepen, F., J. Non-Cryst. Sol. 250–252, 271 (1999).Google Scholar
[7] Wilde, G., Thesis, Technical University Berlin (1997).Google Scholar
[8] Schenk, Th., Holland-Moritz, D. Bender, W. and Herlach, D.M., J. Non-Cryst. Sol. 250–252, 694 (1999).Google Scholar
[9] Willnecker, R., Herlach, D.M. and Feuerbacher, B., Mat. Sci. Eng. 98, (1988).Google Scholar
[10] Cech, R.E. and Turnbull, D., J. Metals 191, 242 (1951).Google Scholar
[11] Skripov, V.P., in Current Topics in Mater. Science, Crystal Growth and Materials, Vol 2, edited by Kaldis, E. and Scheel, H. (North Holland, Amsterdam, 1977) p. 23.Google Scholar
[12] Hofmeister, W.H., Morton, C.W. and Bayuzick, R.J., Acta Mater. 46, 1903 (1998).Google Scholar
[13] Nelson, D.R. and Spaepen, F.; Solid State Phys., Vol.42, edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic, New York, 1989), p.1.Google Scholar
[14] Turnbull, D., J. Appl. Phys. 21, 1022 (1950).Google Scholar
[15] Christian, J.W., The Theory of Transformation in Metals and Alloys, (Pergamon, Oxford, 1975), pp. 418476.Google Scholar
[16] Turnbull, D., Contemp. Phys. 10, 473 (1969).Google Scholar
[17] Morton, C.W., Hofmeister, W.H., Bayuzick, R.J. and Robinson, M.B., Mat. Sci. Eng. A178, 209 (1994).Google Scholar