Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T15:39:20.190Z Has data issue: false hasContentIssue false

Nucleation of Allotropic Phases During Pulsed Laser Annealing of Manganese

Published online by Cambridge University Press:  26 February 2011

J. H. Perepezko
Affiliation:
University of Wisconsin, Madison, Wisconsin 53706
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
P. S. Peercy
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

Manganese has four allotropes with an equilibrium melting point of the high temperature δ-phase at 1517 K and calculated metastable melting points for the ϒ, β and α phases at 1501 K, 1481 K and 1395 K, respectively. Our observations for Mn irradiated with a pulsed laser and supporting estimates of maximum allotropic transition rates indicate that transformations between allotropes are suppressed during heating with ~ 25 ns laser pulses, as well as during subsequent cooling. Upon pulsed heating of β-Mn to the melt threshold, the melt is undercooled 122 K below the δ-Mn melting point. For incident laser pulse energy densities near the melting threshold, resolidification involves regrowth of β-Mn from the substrate. At energy densities well above threshold, the ϒ-Mn phase forms by separate nucleation and growth from the undercooled melt, and is retained upon rapid solidification. From these results and analyses, we conclude that significant melt undercooling, which may exceed 100 K, can occur during pulsed laser melting of metallic crystals and that the resulting crystalline structure is determined by both thermodynamics and nucleation kinetics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.See, e.g., Proc. of the 4th International Conference on Rapidly Quenched Metals, eds. Matsumato, T. and Suzuki, K. (Japan Inst. Metals, Sendai, 1982).Google Scholar
2. Thompson, Michael O., Mayer, J. W., Cullis, A. G., Weber, H. C., Chew, N. G., Poate, J. M. and Jacobson, D. C., Phys. Rev. Lett. 50, 896 (1983).CrossRefGoogle Scholar
3. Thompson, Michael O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G. and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984).CrossRefGoogle Scholar
4. Peercy, P. S., Thompson, Michael O., Tsao, J. Y. and Aziz, M. J., Appl. Phys. Lett. 47, 244 (1985).Google Scholar
5. Follstaedt, D. M., Picraux, S. T., Peercy, P. S., Knapp, J. A. and Wampler, W. R., Mat. Res. Soc. Symp. Proc. 28, 273 (1984).Google Scholar
6. Laridjani, M., Ramachandrarao, P. and Cahn, R. W., J. Matl. Sci. 7, 627 (1972).CrossRefGoogle Scholar
7. Follstaedt, D. M., Peercy, P. S. and Perepezko, J. H., submitted to Appl. Phys. Lett.Google Scholar
8. Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., Kelly, K. K. and Wagman, D. D., Selected Values of the Thermodynamic Properties of the Elements, (ASM, Metals Park, OH, 1973), p. 301.Google Scholar
9. Pearson, W. B., Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, Oxford, 1958), Vol. I, p. 734.Google Scholar
10. Perepezko, J. H. and Boettinger, W. J., Mat. Res. Soc. Symp. Proc. 19, 223 (1983).Google Scholar
11. Perepezko, J. H. and Paik, J. S., J. Non-Cryst. Solids 61, 113 (1984).CrossRefGoogle Scholar
12. Cullis, A. G., Webber, N. C. and Bailey, P., J. Phys. E12, 688 (1979).Google Scholar
13. Basinski, Z. S. and Christian, J. W., Proc. Roy. Soc. London, A223, 554 (1948).Google Scholar
14. Examinations of laser pulse-melted Ti and Be have been done by Buene, L., Kaufmann, E. N., Preece, C. M. and Draper, C. W., Mat. Res. Soc. Symp. Proc. 1, 591 (1981).Google Scholar
15. Christian, J. W., The Theory of Transformations in Metals and Alloys, (Pergamon Press, Oxford, 1965).Google Scholar
16. Askill, J., Phys. Stat. Sol. 33, KI05 (1969).Google Scholar
17. Perepezko, J. H., Met. Trans. A, 15A, 437 (1984).CrossRefGoogle Scholar