Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T01:15:12.124Z Has data issue: false hasContentIssue false

Nucleotides as Structural Templates for The Self-Assembly of Quantum-Confined Cds Crystallites

Published online by Cambridge University Press:  28 February 2011

Jeffery L. Coffer
Affiliation:
Department of Chemistry, Texas Christian University, Ft. Worth, Texas, 76129
Robin R. Chandler
Affiliation:
Department of Chemistry, Texas Christian University, Ft. Worth, Texas, 76129
Get access

Abstract

We report here the use of nucleotides as stabilizers in the formation of quantum-confined (‘Q-size’) CdS, with the size and composition of the nucleotide exerting a significant effect on the resultant CdS structure. In general, CdS formed from equimolar Cd+2 and S2− (6 × 10−4 M) in the presence of a number of nucleotides yields clusters possessing similar absorption spectra but which differ significantly with respect to emissive behavior and overall physical stability. CdS/polynucleotide colloids (DNA, poly [A], poly[C]) exhibit strong trap luminescence and are stable on a timescale of months, but analogous CdS prepared from the mononucleotides ATP and AMP are virtually nonemissive and flocculate within hours, even upon stabilization at lower temperatures (5 to −60°C). In addition to their preparation and spectroscopic properties, the results of TEM, AFM, and computer modeling studies on these CdS/nucleotide colloids are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Steigerwald, M.L., and Brus, L.E., Accts. Chem. Res. 21, 183, (1990);CrossRefGoogle Scholar
(b) Henglein, A., Top. Curr. Chem. 141, 115, (1988);Google Scholar
(c) Steigerwald, M.L., and Brus, L.E., Ann. Rev. Mater. Sci. 19, 471, (1989);Google Scholar
(d) Stucky, G.D., and Mac, J.E. Dougall, Science 247, 669, (1990).Google Scholar
2. (a) Fotjik, A., Weller, H., Koch, U., Henglein, A., Ber. Bunsenges. Phys. Chem. 88, 969, (1984);Google Scholar
(b) Weller, H., Koch, U., Gutierrez, M., Henglein, A., Ber. Bunsenges. Phys. Chem. 88, 649, (1984).Google Scholar
(c) Meyer, M., Walberg, C., Kurihara, C., Fendler, J.H., J. Chem. Soc. Chem. Comm. 90, (1984);Google Scholar
(d) Wang, Y., Suna, A., Wahler, W., Kasowski, R., J. Chem. Phys. 87, 7315, (1987).CrossRefGoogle Scholar
3. (a) Steigerwald, M.L., Alivisatos, A.P., Gibson, J., Harris, T., Kortan, A.R., Muller, A.J., Thayer, A.M., Duncan, T.M., Douglass, D.C., Brus, L.E., J. Am. Chem. Soc. 110, 3046, (1988).Google Scholar
(b) Herron, N. Wang, Y., and Eckert, H., J. Am. Chem. Soc. 112 1322, (1990);CrossRefGoogle Scholar
(c) Kortan, A.R., Hull, R.L., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., Brus, L.E., J. Am. Chem. Soc. 112, 1327, (1990).CrossRefGoogle Scholar
(d) Fischer, C.H., Henglein, A., J. Phys. Chem. 21 5578, (1989).Google Scholar
4. (a) Wang, Y., Herron, N., J. Phys. Chem. 91, 257, (1987).Google Scholar
(b) Herron, N., Wang, Y., Eddy, M., Stucky, G., Cox, D., Moller, K., Bein, T., J. Am. Chem. Soc. 111, 530, (1989).Google Scholar
5. Smotkin, E., Lee, C., Bard, A., Campion, A., Fox, M.A., Mallouk, T., Webber, S., White, J., Chem. Phys. Lett. 152, 265, (1988).Google Scholar
6. (a) Dameron, C., Reese, R., Mehra, R., Kortan, A., Carroll, P., Steigerwald, M.L., Brus, L.E., Winge, D.R., Nature 338, 596, (1989);Google Scholar
(b) Dameron, C., Winge, D.R., Inorg. Chem. 29, 1343, (1990).CrossRefGoogle Scholar
7. Spanhel, L., Hasse, M., Weller, H., Henglein, A., J. Am. Chem. Soc. 109, 5649 (1987).CrossRefGoogle Scholar
8. Wang, Y., Herron, N., J. Phys. Chem. 92, 4988 (1988).CrossRefGoogle Scholar
9. (a) Ramsden, J., Webber, S.E., Gratzel, M., J. Phys. Chem. 89, 2740 (1985);Google Scholar
(b) Chestnoy, N., Harris, T.D., Hull, R., Brus, L.E., J. Phys. Chem. 90, 3393 (1986);Google Scholar
(c) Kuczynski, J., Thomas, J.K., Langmuir 1, 158 (1985);CrossRefGoogle Scholar
(d) Kuczynski, J., Thomas, J.K., J. Phys. Chem. 89, 2720 (1985).CrossRefGoogle Scholar
10. (a) Papavassiliou, G.C., J. Solid State Chem. 40, 330 (1981);Google Scholar
(b) Ramsden, J.J., Gratzel, M., J. Chem Soc. Faraday Trans. I 80, 919 (1984).Google Scholar
11. Lianos, P., Thomas, J.K., Chem. Phys. Lett., 121, 299 (1986).CrossRefGoogle Scholar
12. Barton, J.K. and Lippard, S.J., in Nucleic Acid-Metal Ion Interactions, Ed. Spiro, T. (Wiley and Sons, New York, 1980) pp 6768.Google Scholar